Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane source discovered in the underbrush

06.09.2012
Max Planck Institute for Chemistry: Greenhouse gas is also released by fungi

Some six years ago scientific textbooks had to be updated because of the surprising discovery made by the research group led by Frank Keppler that plants produce methane in an oxygen-rich environment.


Methane producers in the underbrush: new research shows that fungi can also produce methane.
© Katharina Lenhart

At that time this was unthinkable, since it was commonly accepted that biogenic methane could only be formed during the decomposition of organic material under strictly anoxic conditions. His group has now made another fascinating new observation: fungi produce methane.

Methane is 25 times more effective as a greenhouse gas when compared with carbon dioxide. Thus, it contributes significantly to climate change. It is alarming that the concentration of methane in the atmosphere has now almost tripled compared with the state before industrialization. Most methane is produced by bacteria in rice fields, landfills or cattle farming. Following the study of Frank Keppler and his colleagues in 2006 which reported that plants also produce methane, his research team has continued to focus on methane sources. Now Katharina Lenhart, a member of Frank Keppler’s research group at the Max Planck Institute for Chemistry, has made another interesting discovery. She discovered that fungi, which decompose dead organic matter, also emit methane.

In her study, the biologist examined eight different Basidiomycetes fungi. Under laboratory conditions she observed methane production and verified her finding using isotopic labelled substrates. During her experiments she varied the culture media on which the fungi grew and found that the underlying substrate has an impact on the amount of methane formed. Various molecular, biological and analytical methods, in collaborative work with the University of Giessen and the Helmholtz Centre for Environmental Research in Magdeburg, showed that no methanogenic microorganisms (called archaea) – which produce methane in their energy metabolism – were involved. “Thus, processes within the fungi must be responsible for the formation of methane,” explains Katharina Lenhart. As yet which processes these are remains unknown.

“When compared to other well-known methane sources, the amount of methane released by fungi is rather low. Their contribution to global warming is therefore classified as negligible,” says Frank Keppler. Of great scientific interest, however, is the ecological relevance of these results, especially since fungi are in some instances closely associated with bacteria. Many bacteria utilize the energy-rich methane in their metabolism. They absorb methane and oxidize it to water and carbon dioxide. Currently unknown is the extent to which the methane released by fungi is absorbed by these associated bacteria or whether they benefit directly from it, concludes the biologist Katharina Lenhart.

This work is a solid foundation for follow up studies by interdisciplinary research teams to provide the explanation as to why fungi emit methane to their environment.

AR

Original Publication

„Evidence for methane production by saprotrophic fungi“, Katharina Lenhart, Michael Bunge, Stefan Ratering, Thomas R. Neu, Ina Schüttmann, Markus Greule, Claudia Kammann, Sylvia Schnell, Christoph Müller, Holger Zorn, and Frank Keppler; Nature Communications
DOI: 10.1038/ncomms2049

Contact Partner

Dr. Katharina Lenhart
Max Planck Institute for Chemistry
Department of Atmospheric Chemistry, ORCAS Research Group
Tel: +49 6131/ 305 4822
E-Mail: katharina.lenhart@mpic.de

Dr. Frank Keppler
Max Planck Institute for Chemistry
Department of Atmospheric Chemistry, ORCAS Research Group
Tel: +49 6131/ 305 4800
E-Mail: frank.keppler@mpic.de

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>