Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane-eating microbes can use iron and manganese oxides to 'breathe'

13.07.2009
Iron and manganese compounds, in addition to sulfate, may play an important role in converting methane to carbon dioxide and eventually carbonates in the Earth's oceans, according to a team of researchers looking at anaerobic sediments. These same compounds may have been key to methane reduction in the early, oxygenless days of the planet's atmosphere.

"We used to believe that microbes only consumed methane in marine anaerobic sediment if sulfate was present," said Emily Beal, graduate student in geoscience, Penn State. "But other electron acceptors, such as iron and manganese, are more energetically favorable than sulfate."

Microbes or groups of microbes -- consortia -- that use sulfates to convert methane for energy exist in marine sediments. Recently other researchers have identified microbes that use forms of nitrogen in fresh water environments to convert methane.

"People had speculated that iron and manganese could be used, but no one had shown that it occurred by incubating live organisms," said Beal.

Beal, working with Christopher H. House, associate professor of geoscience, Penn State, and Victoria J. Orphan, assistant professor of geobiology, California Institute of Technology, incubated a variety of marine sediments to determine if there were microbes that could convert methane to carbon dioxide without using any sulfur compounds. They report their results in today's (July 10) issue of Science.

Using samples of marine sediment taken 20 miles off the California coast and about 1,800 feet deep near methane seeps in the Pacific, Beal incubated a variety of sediment systems including as controls, an autoclaved sterile sample, a sample with sulfate as a control and a sample that was sulfate, iron oxide and manganese oxide free, but live. She also incubated samples that were sulfate free but contained iron oxide or manganese oxide. She placed methane gas that contained the non-radioactive carbon-13 isotope in the empty space in the flasks above the sediment and tested any resulting carbon dioxide produced by the samples. All the carbon dioxide had the carbon-13 isotope and so came from the methane samples.

The sterile control showed no activity, while the live control without sulfate showed minute activity. The sulfate control showed the most activity as expected, but both the iron and manganese oxide-laced samples showed activity, although less activity than the sulfate.

"We do not think that iron and manganese are more important than sulfate reduction today, but they are not trivial components," said House, who is director of Penn State's Astrobiology Research Center. "They are probably a big part of the carbon cycle today."

One reason they are important is that some of the carbon dioxide produced reacts with both the manganese and iron to form carbonates that precipitate and sequester carbon in the oceans. Even if the carbon dioxide escaped into the atmosphere, it is a less problematic greenhouse gas than methane.

On the early Earth, where oxygen was absent from the atmosphere, sulfates were scarce. Without sulfates, iron and manganese oxides may have been essential in converting methane to carbon dioxide.

"Sulfate comes mostly from oxidative weathering of rocks," said Beal. "Oxygen is needed for this to occur."

While manganese and iron oxides are made in today's oxygen atmosphere, they where also formed by photochemical reactions in a low oxygen atmosphere. These oxides were probably more abundant in the early Earth's oceans than sulfates.

While Beal has categorized the more than a dozen microorganisms living in the sediments she used, she does not know which of these microbes is responsible for consuming methane. It might be one bacteria or archaea species, or it may be a consortium of microbes. She is trying to identify the organisms responsible.

The National Science Foundation and the NASA Astrobiology Institute supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>