Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metallic molecules to nanotubes: Spread out!

24.02.2011
Rice University lab uses ruthenium complexes to dissolve nanotubes, add functionality

A lab at Rice University has stepped forward with an efficient method to disperse nanotubes in a way that preserves their unique properties -- and adds more.

The new technique allows inorganic metal complexes with different functionalities to remain in close contact with single-walled carbon nanotubes while keeping them separated in a solution.

That separation is critical to manufacturers who want to spin fiber from nanotubes, or mix them into composite materials for strength or to take advantage of their electrical properties. For starters, the ability to functionalize the nanotubes at the same time may advance imaging sensors, catalysis and solar-activated hydrogen fuel cells.

Better yet, a batch of nanotubes can apparently stay dispersed in water for weeks on end.

Keeping carbon nanotubes from clumping in aqueous solutions and combining them with molecules that add novel abilities have been flies in the ointment for scientists exploring the use of these highly versatile materials.

They've tried attaching organic molecules to the nanotubes' surfaces to add functionality as well as solubility. But while these techniques can separate nanotubes from one another, they take a toll on the nanotubes' electronic, thermal and mechanical properties.

Angel Marti, a Rice assistant professor of chemistry and bioengineering and a Norman Hackerman-Welch Young Investigator, and his students reported this month in the Royal Society of Chemistry journal Chemical Communications that ruthenium polypyridyl complexes are highly effective at dispersing nanotubes in water efficiently and for long periods. Ruthenium is a rare metallic element.

One key is having just the right molecule for the job. Marti and his team created ruthenium complexes by combining the element with ligands, stable molecules that bind to metal ions. The resulting molecular complex is part hydrophobic (the ligands) and part hydrophilic (the ruthenium). The ligands strongly bind to nanotubes while the attached ruthenium molecules interact with water to maintain the tubes in solution and keep them apart from one another.

Another key turned out to be moderation.

Originally, Marti said, he and co-authors Disha Jain and Avishek Saha weren't out to solve a problem that has boggled chemists for decades, but their willingness to "do something crazy" paid off big-time. Jain is a former postdoctoral researcher in Marti's lab, and Saha is a graduate student.

The researchers were eyeing ruthenium complexes as part of a study to track amyloid deposits associated with Alzheimer's disease. "We started to wonder what would happen if we modified the metal complex so it could bind to a nanotube," Marti said. "That would provide solubility, individualization, dispersion and functionality."

It did, but not at first. "Avishek put this together with purified single-walled carbon nanotubes (created via Rice's HiPco process) and sonicated. Absolutely nothing happened. The nanotubes didn't get into solution -- they just clumped at the bottom.

"That was very weird, but that's how science works -- some things you think are good ideas never work."

Saha removed the liquid and left the clumped nanotubes at the bottom of the centrifuge tube. "So I said, 'Well, why don't you do something crazy. Just add water to that, and with the little bit of ruthenium that might remain there, try to do the reaction.' He did that, and the solution turned black."

A low concentration of ruthenium did the trick. "We found out that 0.05 percent of the ruthenium complex is the optimum concentration to dissolve nanotubes," Marti said. Further experimentation showed that simple ruthenium complexes alone did not work. The molecule requires its hydrophobic ligand tail, which seeks to minimize its exposure to water by binding with nanotubes. "That's the same thing nanotubes want to do, so it's a favorable relationship," he said.

Marti also found the nanotubes' natural fluorescence unaffected by the ruthenium complexes. "Even though they've been purified, which can introduce defects, they still exhibit very good fluorescence," he said.

He said that certain ruthenium complexes have the ability to stay in an excited state for a long time -- about 600 nanoseconds, or 100 times longer than normal organic molecules. "It means the probability that it will transfer an electron is high. That's convenient for energy transfer applications, which are important for imaging," he said.

That nanotubes stay suspended for a long time should catch the eye of manufacturers who use them in bulk. "They should stay separated for weeks without problems," Marti said. "We have solutions that have been sitting for months without any signs of crashing."

The Welch Foundation supported the research.

Read the abstract at http://pubs.rsc.org/en/Content/ArticleLanding/2011/CC/C0CC05295G

Download the Chemical Communications cover image at http://pubs.rsc.org/en/Content/ArticlePDF/2011/CC/C1CC90010B/2011-02-07?page=Search

Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for Ïbest value among private universities by Kiplinger's Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>