Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Strengthens Double Bond

10.12.2012
Professor Holger Braunschweig and his team come up with stunning new discoveries in chemistry with great regularity. This time, the Würzburg researchers turn an established model describing catalytic processes on its head.

Be it margarine, chemical fertilizers or plastic cups: The chemical principle of catalysis plays an important role in the production of various products. In the production process, a so-called catalyst enables certain reactions to proceed. Catalysts are indispensable for hardening vegetable oils into margarine or for producing polyethylene and other plastics.

Take the example of margarine: In order to create spreadable fat from liquid vegetable oil, you need to break bonds in hydrogen molecules. This is where a metallic catalyst comes in. Its metal atom pushes electrons into the bonds, destabilizing them in the process, so that they are ready for the desired reaction.

Established model turned on its head

A metal donates electrons, thereby weakening chemical bonds: This effect – known as the "Dewar-Chatt-Duncanson model" – has been known to chemists since 1953. However, the model must now be supplemented, having been turned on its head by chemists of the University of Würzburg.

The new insight: The electrons of a metal can also strengthen a chemical bond – at least in the case of a double bond between two boron atoms. This is reported in the journal "Nature Chemistry" by researchers of Professor Holger Braunschweig's study group.

Theory experimentally confirmed

A double bond between two boron atoms can accommodate exactly two additional electrons. Chemists speak in this context of a "free II-orbital". If you fill this space, the bond should become stronger: This is the assumption that the Würzburg chemists Dr. Rian Dewhurst and Dr. Alfredo Vargas started from. They modeled their idea on the computer and found it confirmed – purely theoretically at first.

The next step was to confirm the theory by means of an experiment. Within the study group, the researchers found a molecule that was ideally suited for this purpose: a so-called platinum diboranyl complex. This molecule had been synthesized in a sophisticated process by Alexander Damme when working on his doctoral thesis.

Boron-boron double bond plus platinum

The centerpiece of the complex consists of two boron atoms that are linked to each other by a single bond in close proximity to a platinum atom. Damme devised the following procedure: He forced additional electrons on the complex, thus producing a boron-boron double bond.

According to the established model, this double bond should have been weaker than a "normal" boron-boron double bond due to the influence of the platinum metal. In actual fact, however, the bond even proved to be stronger. This was shown in a single crystal X-ray diffraction analysis of the material. This method allows you to determine how far the atoms of a molecule are apart from each other. The closer they are together, the stronger their bond will be. The Würzburg chemists found out that two boron atoms in a double bond come significantly closer together in the presence of platinum than they do without the metal.

New knowledge for textbooks

What are the consequences of this discovery? The everyday practice in chemical laboratories and industrial processes won't be affected for now. But the chemistry textbooks need to be supplemented. To be sure, the "Dewar-Chatt-Duncanson model" has not yet become obsolete; it remains applicable to carbon compounds. But it needs to be substantially extended now. You never know – maybe a model by the name of "Braunschweig-Damme-Dewhurst-Vargas" will be added.

“Bond-strengthening II backdonation in a transition-metal II-diborene complex”, Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, and Alfredo Vargas, Nature Chemistry, 2012 Dec 9, DOI: 10.1038/NCHEM.1520

Contact person

Prof. Dr. Holger Braunschweig, Institute for Inorganic Chemistry of the University of Würzburg, T +49 (0)931 31-85260, h.braunschweig@uni-wuerzburg.de

Robert Emmerich | Uni W¨¹rzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Discovery of an unexpected function of a protein linked to neurodegenerative diseases
28.04.2015 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Rubber from dandelions / Scientists identify key components in the formation of rubber
28.04.2015 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Rapid Detection of Cracks and Corrosion using Magnetic Stray Flux

28.04.2015 | Innovative Products

Discovery of an unexpected function of a protein linked to neurodegenerative diseases

28.04.2015 | Life Sciences

Rubber from dandelions / Scientists identify key components in the formation of rubber

28.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>