Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal Strengthens Double Bond

10.12.2012
Professor Holger Braunschweig and his team come up with stunning new discoveries in chemistry with great regularity. This time, the Würzburg researchers turn an established model describing catalytic processes on its head.

Be it margarine, chemical fertilizers or plastic cups: The chemical principle of catalysis plays an important role in the production of various products. In the production process, a so-called catalyst enables certain reactions to proceed. Catalysts are indispensable for hardening vegetable oils into margarine or for producing polyethylene and other plastics.

Take the example of margarine: In order to create spreadable fat from liquid vegetable oil, you need to break bonds in hydrogen molecules. This is where a metallic catalyst comes in. Its metal atom pushes electrons into the bonds, destabilizing them in the process, so that they are ready for the desired reaction.

Established model turned on its head

A metal donates electrons, thereby weakening chemical bonds: This effect – known as the "Dewar-Chatt-Duncanson model" – has been known to chemists since 1953. However, the model must now be supplemented, having been turned on its head by chemists of the University of Würzburg.

The new insight: The electrons of a metal can also strengthen a chemical bond – at least in the case of a double bond between two boron atoms. This is reported in the journal "Nature Chemistry" by researchers of Professor Holger Braunschweig's study group.

Theory experimentally confirmed

A double bond between two boron atoms can accommodate exactly two additional electrons. Chemists speak in this context of a "free II-orbital". If you fill this space, the bond should become stronger: This is the assumption that the Würzburg chemists Dr. Rian Dewhurst and Dr. Alfredo Vargas started from. They modeled their idea on the computer and found it confirmed – purely theoretically at first.

The next step was to confirm the theory by means of an experiment. Within the study group, the researchers found a molecule that was ideally suited for this purpose: a so-called platinum diboranyl complex. This molecule had been synthesized in a sophisticated process by Alexander Damme when working on his doctoral thesis.

Boron-boron double bond plus platinum

The centerpiece of the complex consists of two boron atoms that are linked to each other by a single bond in close proximity to a platinum atom. Damme devised the following procedure: He forced additional electrons on the complex, thus producing a boron-boron double bond.

According to the established model, this double bond should have been weaker than a "normal" boron-boron double bond due to the influence of the platinum metal. In actual fact, however, the bond even proved to be stronger. This was shown in a single crystal X-ray diffraction analysis of the material. This method allows you to determine how far the atoms of a molecule are apart from each other. The closer they are together, the stronger their bond will be. The Würzburg chemists found out that two boron atoms in a double bond come significantly closer together in the presence of platinum than they do without the metal.

New knowledge for textbooks

What are the consequences of this discovery? The everyday practice in chemical laboratories and industrial processes won't be affected for now. But the chemistry textbooks need to be supplemented. To be sure, the "Dewar-Chatt-Duncanson model" has not yet become obsolete; it remains applicable to carbon compounds. But it needs to be substantially extended now. You never know – maybe a model by the name of "Braunschweig-Damme-Dewhurst-Vargas" will be added.

“Bond-strengthening II backdonation in a transition-metal II-diborene complex”, Holger Braunschweig, Alexander Damme, Rian D. Dewhurst, and Alfredo Vargas, Nature Chemistry, 2012 Dec 9, DOI: 10.1038/NCHEM.1520

Contact person

Prof. Dr. Holger Braunschweig, Institute for Inorganic Chemistry of the University of Würzburg, T +49 (0)931 31-85260, h.braunschweig@uni-wuerzburg.de

Robert Emmerich | Uni W¨¹rzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>