Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metal-organic frameworks feel the pressure of Argonne scientists

New research may be a key step towards real-world uses of MOFs

Scientists at U.S. Department of Energy's Argonne National laboratory are putting the pressure on metal-organic frameworks (MOF).

In MOF materials, metal ions can be connected by organic molecules to form scaffolding-like structures similar to a molecular Tinker toy. The struts that make up the framework structure do not fill space efficiently, in the way that Lego blocks might, leaving extra spaces in the structure which are capable of containing guest molecules.

Behaving as molecular-scale sponges these MOFs have wide ranging potential uses for filtering, capturing or detecting molecules such as carbon dioxide or hydrogen storage for fuel cells.

"By examining the framework at various pressures," scientist Karena Chapman said. "We found that the MOF compresses rapidly at high pressures."

Since the MOF frameworks do not fill space efficiently, the structures are particularly sensitive to even relatively moderate applied pressures. For any carbon dioxide or hydrogen gas storage applications, the MOF materials (which are generally formed as fine particles or small crystals) will need to be compressed into pellets to optimize the volume capacity (an important target parameter). This would subject the structure to pressures up to several gigapascals (GPa).

While a few GPa of pressure would have minimal impact on denser oxide-based materials, MOFs may show significant and possibly irreversible distortions to the structure and to the selective gas storage properties. Understanding how MOF materials can behave under pressure is an important step in taking MOF technology beyond the lab.

Chapman, along with Argonne scientists Gregory Halder and Peter Chupas, synthesized a Copper-Benzenetricarboxylate MOF and subjected the framework to various pressures inside a diamond anvil cell with and without pressure-transmitting fluids at the laboratory's Advanced Photon Source.

X-ray diffraction from the laboratory's Advanced Photon Source data showed a transition from the hard regime where pressure transmitting fluid penetrates the framework cavities to a soft regime where the MOF compresses concertedly.

This uncharacteristic behavior is caused by the presence of smaller molecules in the pressure-transmitting fluid that can permeate the framework's cavities. This leads to a supersaturated state that counteracts the external pressure until a threshold pressure is reached and the MOF rapidly compresses and cannot allow any additional guest molecules into the cavities.

"MOFs have wide and varied potential applications in the real world," Chapman said. "By exploring high pressure phenomenon, we come a step closer to realizing these advanced applications."

Brock Cooper | EurekAlert!
Further information:

Further reports about: Argonne Framework GPa MOF Photon X-ray diffraction carbon dioxide organic molecule pressure structure

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>