Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal-organic frameworks feel the pressure of Argonne scientists

29.09.2008
New research may be a key step towards real-world uses of MOFs

Scientists at U.S. Department of Energy's Argonne National laboratory are putting the pressure on metal-organic frameworks (MOF).

In MOF materials, metal ions can be connected by organic molecules to form scaffolding-like structures similar to a molecular Tinker toy. The struts that make up the framework structure do not fill space efficiently, in the way that Lego blocks might, leaving extra spaces in the structure which are capable of containing guest molecules.

Behaving as molecular-scale sponges these MOFs have wide ranging potential uses for filtering, capturing or detecting molecules such as carbon dioxide or hydrogen storage for fuel cells.

"By examining the framework at various pressures," scientist Karena Chapman said. "We found that the MOF compresses rapidly at high pressures."

Since the MOF frameworks do not fill space efficiently, the structures are particularly sensitive to even relatively moderate applied pressures. For any carbon dioxide or hydrogen gas storage applications, the MOF materials (which are generally formed as fine particles or small crystals) will need to be compressed into pellets to optimize the volume capacity (an important target parameter). This would subject the structure to pressures up to several gigapascals (GPa).

While a few GPa of pressure would have minimal impact on denser oxide-based materials, MOFs may show significant and possibly irreversible distortions to the structure and to the selective gas storage properties. Understanding how MOF materials can behave under pressure is an important step in taking MOF technology beyond the lab.

Chapman, along with Argonne scientists Gregory Halder and Peter Chupas, synthesized a Copper-Benzenetricarboxylate MOF and subjected the framework to various pressures inside a diamond anvil cell with and without pressure-transmitting fluids at the laboratory's Advanced Photon Source.

X-ray diffraction from the laboratory's Advanced Photon Source data showed a transition from the hard regime where pressure transmitting fluid penetrates the framework cavities to a soft regime where the MOF compresses concertedly.

This uncharacteristic behavior is caused by the presence of smaller molecules in the pressure-transmitting fluid that can permeate the framework's cavities. This leads to a supersaturated state that counteracts the external pressure until a threshold pressure is reached and the MOF rapidly compresses and cannot allow any additional guest molecules into the cavities.

"MOFs have wide and varied potential applications in the real world," Chapman said. "By exploring high pressure phenomenon, we come a step closer to realizing these advanced applications."

Brock Cooper | EurekAlert!
Further information:
http://www.anl.gov

Further reports about: Argonne Framework GPa MOF Photon X-ray diffraction carbon dioxide organic molecule pressure structure

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>