Max Planck scientists in Jena, Germany, have discovered an unusual regulation of enzymes that catalyze chain elongation in an important secondary metabolism, the terpenoid pathway.
Larvae of horseradish leaf beetle Phaedon cochleariae
Photo: Sindy Frick / MPI for Chemical Ecology
In the horseradish leaf beetle Phaedon cochleariae a single enzyme can trigger the production of two completely different substances depending on whether it is regulated by cobalt, manganese or magnesium ions: iridoids, which are defensive substances the larvae use to repel predators, or juvenile hormones, which control insect’s development. Insects unlike plants do not have a large arsenal of the proteins called isoprenyl diphosphate synthases.
Therefore they may have developed another efficient option to channel metabolites into the different directions of terpenoid metabolism by using metal ions for control. (PNAS, Early Edition, February 25, 2013, DOI:10.1073/pnas.1221489110)Experiments with larvae in which the enzyme encoding gene was silenced showed that the protein was involved in the formation of the C10 monoterpene chrysomelidial that larvae produce to defend themselves against predators. The larvae accumulate this monoterpene in special glands and release it as a defensive secretion when they are attacked by their enemies, such as ants.
However, surprising results emerged after comprehensive biochemical characterization of the enzyme. “After we had conducted an in vitro analysis of the protein, including measurements of product formation in the presence of different metal ions as co-factors, we were surprised to discover that only geranyl diphosphate (C10), a precursor for the defensive substance chrysomelidial, was produced after addition of cobalt and manganese ions. On the other hand, adding magnesium ions resulted in the formation of farnesyl diphosphate (C15), a potential precursor for juvenile hormones, which is 5 carbon atoms longer,” says the scientist. All three metals were found in larval tissue, leading to the assumption that enzyme catalysis is directed by the different metal co-factors in the larvae, whichever is predominant in amount: Towards toxin or hormone − physiologically a major difference.
Sequence comparisons cannot replace a thorough biochemical analysis
How the different metal ions modify the product range of the enzyme is still unclear. It is very likely that the varying atomic radii of the metal ions involved in the catalysis effect changes in the spatial structure of the enzyme, which prevent or allow the admission of a third C5 unit and hence result in the production of C10 or C15 molecules.
“Our experiments provide two important findings,” says Wilhelm Boland, director at the Max Planck Institute. “First, the directing influence of metal ions on the product formation of isoprenyl diphosphate synthases is a novel “control element” in the regulation of the terpene metabolism which should be included in future experimental settings. And secondly: The diversity of terpenoid molecules cannot be attributed solely to the broad substrate specificity of some enzymes in the last steps of the metabolic pathway, but is in fact already inherent in early biosynthetic steps.” Nature continues to provide interesting answers to the question how organisms manage to produce tens of thousands of different secondary metabolites. [JWK/AO]http://dx.doi.org/10.1073/pnas.1221489110
Further Information:
Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/515.html
Further reports about: > Ecology > Max Planck Institute > biosynthetic pathway > carbon atom > chemical engineering > insects > leaf beetle > magnesium ion > metabolism > signaling pathway
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics
Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
World's smallest optical implantable biodevice
26.04.2018 | Power and Electrical Engineering
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | Life Sciences
First Li-Fi-product with technology from Fraunhofer HHI launched in Japan
26.04.2018 | Power and Electrical Engineering