Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metadynamics technique offers insight into mineral growth and dissolution

24.01.2012
By using a novel technique to better understand mineral growth and dissolution, researchers at the Department of Energy's Oak Ridge National Laboratory are improving predictions of mineral reactions and laying the groundwork for applications ranging from keeping oil pipes clear to sequestering radium.

The mineral barite was examined to understand mineral growth and dissolution generally, but also because it is the dominant scale-forming mineral that precipitates in oil pipelines and reservoirs in the North Sea. Oil companies use a variety of compounds to inhibit scale formation, but a better understanding of how barite grows could enable them to be designed more efficiently.

Additionally, barium can trap radium in its crystal structure, so it has the potential to contain the radioactive material.

In a paper featured on this month's cover of the Journal of the American Chemical Society, the ORNL-led team studied barite growth and dissolution using metadynamics, a critical technique that allows researchers to study much slower reactions than what is normally possible.

"When a mineral is growing or dissolving, you have a hard time sorting out which are the important reactions and how they occur because there are many things that could be happening on the surface," said Andrew Stack, ORNL geochemist and lead author on the paper. "We can't determine which of many possible reactions are controlling the rate of growth."

To overcome this hurdle, ORNL Chemical Sciences Division's Stack started with molecular dynamics, which can simulate energies and structures at the atomic level. To model a mineral surface accurately, the researchers need to simulate thousands of atoms. To directly measure a slow reaction with this many atoms during mineral growth or dissolution might take years of supercomputer time. Metadynamics, which builds on molecular dynamics, is a technique to "push" reactions forward so researchers can observe them and measure how fast they are proceeding in a relatively short amount of computer time.

With the help of metadynamics, the team determined that there are multiple intermediate reactions that take place when a barium ion attaches or detaches at the mineral surface, which contradicts the previous assumption that attachment and detachment occurred all in a single reaction.

"Without metadynamics, we would never have been able to see these intermediates nor determine which ones are limiting the overall reaction rate," Stack said.

To run computer simulations of mineral growth, researchers used the Large-scale Atomic/Molecular Massively Parallel Simulator, a molecular dynamics code developed by Sandia National Laboratories. Co-authors on the paper are the Curtin University (Australia) Nanochemistry Research Institute's Paolo Raiteri and Julian Gale.

In a podcast (http://pubs.acs.org/JACSbeta/coverartpodcasts) from the American Chemical Society, Andrew Stack talks about his metadynamics research.

The research was sponsored by the DOE Office of Science. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov

Emma Macmillan | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>