Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metabolism models may explain why Alzheimer's disease kills some neuron types first

Bioengineers from the University of California, San Diego developed an explanation for why some types of neurons die sooner than others in the brains of people with Alzheimer’s disease. These insights, published in the journal Nature Biotechnology on November 21, come from detailed models of brain energy metabolism developed in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering.

The Alzheimer’s insights demonstrate how fundamental insights on human metabolism can be gleaned from computer models that incorporate large genomic and proteomic data sets with information from biochemical studies. UC San Diego bioengineering professor Bernhard Palsson and his students and collaborators first developed this “in silico” modeling approach for E. coli and other prokaryotes, and later extended it to human tissues.

The Nature Biotechnology paper describes the first time this modeling approach has been used to capture how the metabolism of specific human cell types affect the metabolism of other cell types.

“In human tissues, different cells have different roles. We’re trying to predict how the behavior of one cell type will affect the behavior of other cell types,” said Nathan Lewis, a Ph.D. candidate in the Department of Bioengineering at the UC San Diego Jacobs School of Engineering and the first author on the Nature Biotechnology paper, which also includes authors from the University of Heidelberg, Massachusetts Institute of Technology, and the German Cancer Research Center (DKFZ).

Similar approaches can be used to identify potential off-target effects of drugs, provide insights on disease progression, and offer new tools for uncovering the underlying biological mechanisms in a wide range of human tissues and cell types.

Why Some Neurons Die First in the Alzheimer’s Brain

In the brains of people with Alzheimer’s disease, certain cells, such as glutamatergic and cholinergic neurons, tend to die in much larger numbers in moderate stages of Alzheimer’s disease, while GABAergic neurons are relatively unaffected until later stages of the disease.

“There is a big question as to what is causing this cell-type specificity,” said Lewis.

The researchers builtPalsson Lab: Systems Biology Research Group computational models that captured the metabolic interactions between each of the three neuron types and their associated astrocyte cells. Next, the bioengineersknocked down α-ketoglutarate, a gene known to be damaged in patients with Alzheimer’s disease, and let their models of brain metabolism run to see what happens.

The results from the models agreed with clinical data. When the bioengineers disrupted the α-ketoglutarate enzyme in the models for cholinergic and glutamatergic neurons, the metabolic rate of these neurons dropped, leading to cell death. “But then you have the GABAergic neurons that show no effect. So the cell types that are known to be lost early on in Alzheimer’s show slowed metabolic rates,” explained Lewis.

Analysis of their models then led the bioengineers to the biochemical pathways that allowed the GABAergic neurons to be relatively unaffected despite the disrupted gene.

“We looked at what upstream is allowing this and found a GABA-specific enzyme called glutamate decarboxylase,” said Lewis.

When the researchers added this enzyme to the models of the other neuron types, the metabolic rates of these neurons improved as well. Thus the model allowed the researchers to identify a gene and how it contributes to the whole cell to potentially prolong the life of certain cells in Alzheimer’s disease.

Large Scale Modeling of Metabolic Interactions

The new Nature Biotechnology paper uses the Alzheimer’s brain study as an example of how to build models of metabolism that go one level deeper than previous work by taking into account the tissue microenvironment and metabolic interactions between specific cell types.

The models for each cell can be represented like a circuit, with certain inputs and outputs. For example, sugars, like glucose, are inputs, and the models detail how these inputs are used to build cell parts and secrete byproducts as outputs. The metabolic models the bioengineers built provide a means to study these networks.

For example, each cell type has different biochemical pathways that can take the sugars from point A to B. If you knock out a gene in between, the network might find a different route, produce different products, or predict cell death. When models for multiple cells are combined, additional insight can be gained since the inputs and outputs of each model begin to affect the other cells.

“There are many potential applications for these models. For example, this modeling approach could be useful for predicting off target side effects of drugs. You could theoretically take a cell line, throw a drug at it and see which metabolic pathways are significantly affected. Thus, you could decrease the amount of resources spent on drug development if the model suggests negative side effects that may cause it to fail,” said Lewis.

“Large-scale in silico modeling of metabolic interactions between cell types in the human brain,” by Nathan E Lewis (1), Gunnar Schramm (2,5), Aarash Bordbar (1), Jan Schellenberger (3), Michael P Andersen (1), Jeffrey K Cheng (1), Nilam Patel (1), Alex Yee (1), Randall A Lewis (4), Roland Eils (2,5), Rainer König (2,5) & Bernhard Ø Palsson (1); published online on November 21, 2010 in Nature Biotechnology.

(1) Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
(2) Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg, Germany.
(3) Bioinformatics Program, University of California, San Diego, La Jolla, California, USA.
(4) Department of Economics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

(5) Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

This work was funded in part by a Fulbright fellowship, a National Science Foundation IGERT Plant Systems Biology training grant (no. DGE-0504645), a US National Institutes of Health grant 2R01GM068837_05A1 and the Helmholtz Alliance on Systems Biology and the BMBF by the NGFN+ neuroblastoma project ENGINE.

Daniel Kane | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>