Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic state of brain cancer stem cells significantly different than the cancer cells they create

07.09.2011
The metabolic state of glioma stem cells, which give rise to deadly glioblastomas, is significantly different from that of the brain cancer cells to which they give birth, a factor which helps those stem cells avoid treatment and cause recurrence later.

Researchers with the UCLA Department of Radiation Oncology at UCLA's Jonsson Comprehensive Cancer Center also found for the first time that these glioma stem cells can change their metabolic state at will, from glycolysis, which uses glucose, to oxidative phosphorylation, which uses oxygen.

The glioma stem cells' ability to change their metabolic state at will also allow these stem cells that seed new cancer growth to evade treatment and remain alive, said Dr. Frank Pajonk, an associate professor of radiation oncology and senior author of the study.

"We found these cancer stem cells are substantially different in their metabolic states than the differentiated cancer cells they create, and since they act differently, they can't be killed in the same way," Pajonk said. "And as yet, we don't have anything to target these glioma stem cells specifically."

The study is published this week in the early online edition of the peer-reviewed journal Proceedings of the National Academy of Sciences.

Cancer cells take up large amounts of glucose, which fuels their grow and spread and allows them to be differentiated from normal cells under Positron Emission Tomography (PET) scanning, which captures metabolic activity. Pajonk and his team found that the glioma stem cells took up much less glucose, which makes them difficult to detect with PET.

Targeting cancer metabolic pathways as a treatment has gained new interest in recent years. However, these cancer stem cells that take up less glucose could evade those treatments by utilizing glucose more efficiently through oxidative phosphorylation, which would not be targeted by such drugs.

"If glioma stem cells are indeed important for tumor control, knowledge of the metabolic state of glioma stem cells is needed," the study states.

Using a unique imaging system Pajonk and his team developed for glioma stem cells that relies on low enzymatic activity of the proteasome in cancer stem cells, they were able to assess them for metabolic function, including oxygen consumption rates, glucose uptake and other markers. They also found that the glioma stem cells were resistant to radiation, another roadblock to targeting these cells with conventional treatments.

Pajonk and his team concluded that glioma stem cells rely mainly on oxidative phosphorylation for energy. But they found if the stem cells were challenged, they could switch on additional metabolic pathways.

The study also shows for the first time that low expression of proteasome sub-units, an indicator of large numbers of glioma stem cells in the tumor, predicts unfavorable treatment outcomes for those patients.

"What I think is really exciting is we have here for the first time a novel cancer stem cell marker in glioma, which gives us an additional tool to look for these cells and come up with therapies that target them," said Pajonk, who also is a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

This study was funded by the National Cancer Institute.

UCLA's Jonsson Comprehensive Cancer Center has more than 240 researchers and clinicians engaged in disease research, prevention, detection, control, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating basic science into leading-edge clinical studies. In July 2011, the Jonsson Cancer Center was named among the top 10 cancer centers nationwide by U.S. News & World Report, a ranking it has held for 11 of the last 12 years. For more information on the Jonsson Cancer Center, visit our website at http://www.cancer.ucla.edu.

Kim Irwin | EurekAlert!
Further information:
http://www.ucla.edu
http://www.cancer.ucla.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>