Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic protein plays unexpected role in tumor cell formation and growth

07.11.2011
Findings point to possible personalized brain tumor therapy with Src inhibitors

The embryonic enzyme pyruvate kinase M2 (PKM2) has a well-established role in metabolism and is highly expressed in human cancers. Now, a team led by researchers at the University of Texas MD Anderson Cancer Center reports in advance online publication of the journal Nature that PKM2 has important non-metabolic functions in cancer formation.

"Our research shows that although PKM2 plays an important role in cancer metabolism, this enzyme also has an unexpected pivotal function – it regulates cell proliferation directly," said senior author Zhimin Lu, M.D., Ph.D., associate professor in the Department of Neuro-Oncology at MD Anderson. "Basically, PKM2 contributes directly to gene transcription for cell growth – a finding that was very surprising."

The researchers demonstrated that PKM2 is essential for epidermal growth factor receptor (EGFR)–promoted beta-catenin activation, which leads to gene expression, cell growth and tumor formation.

They also discovered that levels of beta-catenin phosphorylation and PKM2 in the cell nucleus are correlated with brain tumor malignancy and prognosis and might serve as biomarkers for customized treatment with Src inhibitors.

In response to epidermal growth factor (EGF), the team found, PKM2 moves into the cell nucleus and binds to beta-catenin that has had a phosphate atom and three oxygen atoms attached at a specific spot called Y333 by the protein c-Src. This binding is essential for beta-catenin activation and expression of downstream gene cyclin D1. This newly discovered way to regulate beta-catenin is independent of the Wnt signaling pathway previously known to activate beta-catenin.

One enzyme controls both cancer cell metabolism and cell cycle progression

In metabolism, PKM2 enhances oxygen-driven processing of sugar known as aerobic glycolysis or the Warburg effect found in tumor cells.

"Cancer cell metabolism and cancer cell cycle progression, which are essential for tumor formation, are conventionally thought to be regulated primarily by distinct signaling complexes," Lu said. The new findings integrate the two major mechanisms for regulating cancer cell growth by a key metabolic enzyme. "These two important regulatory processes are under the control of pyruvate kinase M2."

New insight into brain malignancies and cancer therapy

Beta-catenin activation that is independent of the Wnt signaling pathway have been observed in many types of cancer. This study reveals a critical mechanism underlying Wnt-independent beta-catenin activation and indicates that c-Src-phosphorylated beta-catenin and nuclear PKM2 are independent predictors of glioma malignancy.

The researchers analyzed brain tumors in 84 patients who had been treated with radiation and chemotherapy after surgery. Those who had low beta-catenin Y333 phosphorylation or low expression of PKM2 in the nucleus (28 cases each) had a median survival of 185 weeks and 130 weeks, respectively.

Median survival decreased for those who had high levels of beta-catenin phosphorylation or nuclear PKM2 expression (56 cases each) to 69.4 weeks and 82.5 weeks, respectively.

Findings include:

PKM2-dependent beta-catenin activation is instrumental in EGFR-promoted tumor cell proliferation and brain tumor development.
c-Src activity, beta-catenin Y333 phosphorylation, and PKM2 nuclear accumulation are positively correlated in human glioblastoma specimens.

Levels of beta-catenin phosphorylation and nuclear PKM2 are correlated with grades of glioma malignancy and prognosis.

Personalized therapy with Src inhibitors

One potential implication of their research is the potential use of c-Src-dependent beta-catenin Y333 phosphorylation levels as a biomarker for selecting patients for treatment.

"This finding is very important because EGFR-based therapy is not very efficient due to drug resistance, and cancer patients need alternative treatment strategies," Lu said. "Thus, this discovery can potentially serve as a guideline for personalized cancer therapy in the treatment of glioma and other tumors with Src inhibitors."

Src inhibitors include dasatinib, which has been approved by the FDA for leukemia treatment, or bosutinib and saracatinib, which are in clinical trials.

Co-authors with Lu are: first author Weiwei Yang, Ph.D, Yan Xia, Ph.D., Haitao Ji, Ph.D., Yanhua Zheng, Ph.D., and Ji Liang, Ph.D., all of MD Anderson's Brain Tumor Center and Department of Neuro-Oncology; Wenhua Huang, Ph.D., of Jiaxing Xinda Biotechnology Company, Jiaxing, Zhejiang, China; Xiang Gao, Ph.D., of Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; and Kenneth Aldape, M.D., of MD Anderson's Department of Pathology.

This work was supported by grants from the National Cancer Institute and the Cancer Prevention and Research Institute of Texas (CPRIT), an American Cancer Society Research Scholar Award and an institutional research grant from The University of Texas MD Anderson Cancer Center.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>