Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic Molecule Drives Growth Of Aggressive Brain Cancer

14.06.2013
Genomic research has shown that glioblastoma, the most dangerous type of brain cancer, has four subtypes.
This study examines two of the subtypes and identifies an abnormal metabolic pathway that drives the aggressive growth of one of them.

The findings could lead to targeted therapies for treating an aggressive form of glioblastoma.

A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal metabolic pathway that drives cancer-cell growth in a particular glioblastoma subtype. The finding might lead to new therapies for a subset of patients with glioblastoma, the most common and lethal form of brain cancer.

The physician scientists sought to identify glioblastoma subtype-specific cancer stem cells. Genetic analyses have shown that high-grade gliomas can be divided into four subtypes: proneural, neural, classic and mesenchymal.

This study shows that the mesenchymal subtype is the most aggressive subtype, that it has the poorest prognosis among affected patients, and that cancer stem cells isolated from the mesenchymal subtype have significantly higher levels of the enzyme ALDH1A3 compared with the proneural subtype.

The findings, published recently in the Proceedings of the National Academy of Sciences, show that high levels of the enzyme drive tumor growth.

“Our study suggests that ALDH1A3 is a potentially functional biomarker for mesenchymal glioma stem cells, and that inhibiting that enzyme might offer a promising therapeutic approach for high-grade gliomas that have a mesenchymal signature,” says principal investigator Ichiro Nakano, MD, PhD, associate professor of neurosurgery at the OSUCCC – James. “This indicates that therapies for high-grade gliomas should be personalized, that is, based on the tumor subtype instead of applying one treatment to all patients,” he says.

The National Cancer Institute estimates that 23,130 Americans will be diagnosed with brain and other nervous system tumors in 2013, and that 14,000 people will die of these malignancies. Glioblastoma accounts for about 15 percent of all brain tumors, is resistant to current therapies and has a survival as short as 15 months after diagnosis.

Little is known, however, about the metabolic pathways that drive the growth of individual glioblastoma subtypes – knowledge that is crucial for developing novel and effective targeted therapies that might improve treatment for these lethal tumors.

For this study, Nakano and his collaborators used cancer cells from 40 patients with high-grade gliomas, focusing on tumor cells with a stem-cell signature. The researchers then used microarray analysis and pre-clinical animal assays to identify two predominant glioblastoma subtypes, proneural and mesenchymal.

Key technical findings include:
Genes involved in glycolysis and gluconeogenesis, particularly ALDH1A3, were significantly up-regulated in mesenchymal glioma stem cells compared to proneural stem cells;

Mesenchymal glioma stem cells show significantly higher radiation resistance and high expression of DNA-repair genes;

Radiation induces transformation of proneural glioma stem cells into mesenchymal-like glioma stem cells that are highly resistant to radiation treatment; inhibiting the ALDH1 pathway reverses this resistance.

Inhibiting ALDH1A3-mediated pathways slows the growth of mesenchymal glioma stem cells and might provide a promising therapeutic approach for glioblastomas with a mesenchymal signature.

“Overall, our data suggest that a novel signaling mechanism underlies the transformation of proneural glioma stem cells to mesenchymal-like cells and their maintenance as stem-like cells,” Nakano says. Currently, their discoveries are in provision patent application, led by the Technology Licensing Office at University of Pittsburgh.

Funding from the American Cancer Society, the NIH/National Cancer Institute (CA135013, CA130966, CA158911, CA148629, CA047904); the NIH/National Institute of General Medical Sciences (GM087798, GM099213); NIH/National Institute of Neurological Disorders and Stroke (NS037704); NIH/National Institute of Environmental Health Sciences (ES019498); NIH/National Library of Medicine (LM009657); NIH/National Center for Research Resources (RR024153); the James S. McDonnell Foundation; the Zell Family Foundation; the Northwestern Brain Tumor Institute; the National Research Foundation of Korea; and the China Scholarship Council supported this research.

Other researchers involved in this study were Ping Mao, Kaushal Joshi, Sung-Hak Kim, Peipei Li and Luke Smith, The Ohio State University; Lucas Santana-Santos, Soumya Luthra, Uma R. Chandran, Panayiotis V. Benos, Jianfeng Li and Robert W. Sobol, the University of Pittsburgh; Maode Wang, Xi’an Jiaotong University, China; and Bo Hu and Shi-Yuan Cheng, Korea University, Republic of Korea.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

A high quality JPEG of Ichiro Nakano, MD, PhD, is available here.

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations, 614-293-3737, or Darrell.Ward@osumc.edu

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>