Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metabolic Molecule Drives Growth Of Aggressive Brain Cancer

Genomic research has shown that glioblastoma, the most dangerous type of brain cancer, has four subtypes.
This study examines two of the subtypes and identifies an abnormal metabolic pathway that drives the aggressive growth of one of them.

The findings could lead to targeted therapies for treating an aggressive form of glioblastoma.

A study led by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James) has identified an abnormal metabolic pathway that drives cancer-cell growth in a particular glioblastoma subtype. The finding might lead to new therapies for a subset of patients with glioblastoma, the most common and lethal form of brain cancer.

The physician scientists sought to identify glioblastoma subtype-specific cancer stem cells. Genetic analyses have shown that high-grade gliomas can be divided into four subtypes: proneural, neural, classic and mesenchymal.

This study shows that the mesenchymal subtype is the most aggressive subtype, that it has the poorest prognosis among affected patients, and that cancer stem cells isolated from the mesenchymal subtype have significantly higher levels of the enzyme ALDH1A3 compared with the proneural subtype.

The findings, published recently in the Proceedings of the National Academy of Sciences, show that high levels of the enzyme drive tumor growth.

“Our study suggests that ALDH1A3 is a potentially functional biomarker for mesenchymal glioma stem cells, and that inhibiting that enzyme might offer a promising therapeutic approach for high-grade gliomas that have a mesenchymal signature,” says principal investigator Ichiro Nakano, MD, PhD, associate professor of neurosurgery at the OSUCCC – James. “This indicates that therapies for high-grade gliomas should be personalized, that is, based on the tumor subtype instead of applying one treatment to all patients,” he says.

The National Cancer Institute estimates that 23,130 Americans will be diagnosed with brain and other nervous system tumors in 2013, and that 14,000 people will die of these malignancies. Glioblastoma accounts for about 15 percent of all brain tumors, is resistant to current therapies and has a survival as short as 15 months after diagnosis.

Little is known, however, about the metabolic pathways that drive the growth of individual glioblastoma subtypes – knowledge that is crucial for developing novel and effective targeted therapies that might improve treatment for these lethal tumors.

For this study, Nakano and his collaborators used cancer cells from 40 patients with high-grade gliomas, focusing on tumor cells with a stem-cell signature. The researchers then used microarray analysis and pre-clinical animal assays to identify two predominant glioblastoma subtypes, proneural and mesenchymal.

Key technical findings include:
Genes involved in glycolysis and gluconeogenesis, particularly ALDH1A3, were significantly up-regulated in mesenchymal glioma stem cells compared to proneural stem cells;

Mesenchymal glioma stem cells show significantly higher radiation resistance and high expression of DNA-repair genes;

Radiation induces transformation of proneural glioma stem cells into mesenchymal-like glioma stem cells that are highly resistant to radiation treatment; inhibiting the ALDH1 pathway reverses this resistance.

Inhibiting ALDH1A3-mediated pathways slows the growth of mesenchymal glioma stem cells and might provide a promising therapeutic approach for glioblastomas with a mesenchymal signature.

“Overall, our data suggest that a novel signaling mechanism underlies the transformation of proneural glioma stem cells to mesenchymal-like cells and their maintenance as stem-like cells,” Nakano says. Currently, their discoveries are in provision patent application, led by the Technology Licensing Office at University of Pittsburgh.

Funding from the American Cancer Society, the NIH/National Cancer Institute (CA135013, CA130966, CA158911, CA148629, CA047904); the NIH/National Institute of General Medical Sciences (GM087798, GM099213); NIH/National Institute of Neurological Disorders and Stroke (NS037704); NIH/National Institute of Environmental Health Sciences (ES019498); NIH/National Library of Medicine (LM009657); NIH/National Center for Research Resources (RR024153); the James S. McDonnell Foundation; the Zell Family Foundation; the Northwestern Brain Tumor Institute; the National Research Foundation of Korea; and the China Scholarship Council supported this research.

Other researchers involved in this study were Ping Mao, Kaushal Joshi, Sung-Hak Kim, Peipei Li and Luke Smith, The Ohio State University; Lucas Santana-Santos, Soumya Luthra, Uma R. Chandran, Panayiotis V. Benos, Jianfeng Li and Robert W. Sobol, the University of Pittsburgh; Maode Wang, Xi’an Jiaotong University, China; and Bo Hu and Shi-Yuan Cheng, Korea University, Republic of Korea.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only four centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State’s cancer program as “exceptional,” the highest rating given by NCI survey teams. As the cancer program’s 228-bed adult patient-care component, The James is a “Top Hospital” as named by the Leapfrog Group and one of the top cancer hospitals in the nation as ranked by U.S.News & World Report.

A high quality JPEG of Ichiro Nakano, MD, PhD, is available here.

Contact: Darrell E. Ward, Wexner Medical Center Public Affairs and Media Relations, 614-293-3737, or

Darrell E. Ward | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>