Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The more the merrier

16.03.2011
Computational search algorithms take the guesswork out of understanding complex, multi-molecule transformations

Multicomponent reactions (MCRs) that chemically combine three or more molecules into a brand new product are faster and generate less waste than traditional step-by-step synthetic procedures, making them invaluable in efforts to improve efficiency and sustainability.

Since 1921, chemists have used an MCR called the Passerini reaction to produce bioactive, peptide-like chains made from three partners: carboxylic acids, carbonyl compounds, and cyanide-bearing molecules. However, a full understanding of this process has eluded researchers because its multipart workings are difficult to detect experimentally.

Now, Satoshi Maeda and Keiji Morokuma from Kyoto University and Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako have developed a computerized way to better identify the hidden mechanisms of one-pot, multi-step chemical transformations[1]. Their technique, the artificial force induced reaction (AFIR), systematically squeezes and joins model compounds together in order to rapidly detect signatures of real MCR energy barriers.

According to Maeda, detailed theoretical understandings of MCRs have been scarce because most calculations require excellent estimates of transition state structures—intermediate and often highly strained geometric arrangements between molecules that correspond to the energetic peak of a reaction barrier. “Consequently, a trial-and-error process based only on [chemistry-based] intuition is unavoidable,” he says.

The AFIR method, on the other hand, requires no such presumptions. Maeda explains that when two molecules are pushed into each other with a weak force, they spontaneously relax into ‘dents’ in the potential barrier created by attractive electronic interactions between the reactants. By methodically pressing over all possible orientations, and inducing an artificial reaction from the relaxed positions, AFIR searches can identify every stable reaction pathway in a system.

To the team’s surprise, applying AFIR calculations to the Passerini reaction revealed that four components, not the long-thought three, must be involved (Fig. 1). Since the reaction barriers were so high, the researchers realized that an additional carboxylic acid—a known proton transfer catalyst—had to participate in the transition states leading to the final product. This finding should enable design of Passerini reactions with improved structural selectivity, notes Maeda.

Once perfected, the researchers anticipate their technique will make MCRs even more widespread. “Unlike standard methods, giving only pathways that are easy to find, the AFIR method has a unique ability to find unknown pathways in MCRs systematically,” says Maeda. “Information on reaction pathways is very important even for processes that do not normally occur, because chemists can initiate such reactions by controlling conditions, modifying substituents, and introducing new catalysts.”

Journal information

[1] Maeda, S., Komagawa, S., Uchiyama, M. & Morokuma, K. Finding reaction pathways for multicomponent reactions: The Passerini reaction is a four-component reaction. Angewandte Chemie International Edition 50, 644–649 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>