Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The more the merrier

16.03.2011
Computational search algorithms take the guesswork out of understanding complex, multi-molecule transformations

Multicomponent reactions (MCRs) that chemically combine three or more molecules into a brand new product are faster and generate less waste than traditional step-by-step synthetic procedures, making them invaluable in efforts to improve efficiency and sustainability.

Since 1921, chemists have used an MCR called the Passerini reaction to produce bioactive, peptide-like chains made from three partners: carboxylic acids, carbonyl compounds, and cyanide-bearing molecules. However, a full understanding of this process has eluded researchers because its multipart workings are difficult to detect experimentally.

Now, Satoshi Maeda and Keiji Morokuma from Kyoto University and Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako have developed a computerized way to better identify the hidden mechanisms of one-pot, multi-step chemical transformations[1]. Their technique, the artificial force induced reaction (AFIR), systematically squeezes and joins model compounds together in order to rapidly detect signatures of real MCR energy barriers.

According to Maeda, detailed theoretical understandings of MCRs have been scarce because most calculations require excellent estimates of transition state structures—intermediate and often highly strained geometric arrangements between molecules that correspond to the energetic peak of a reaction barrier. “Consequently, a trial-and-error process based only on [chemistry-based] intuition is unavoidable,” he says.

The AFIR method, on the other hand, requires no such presumptions. Maeda explains that when two molecules are pushed into each other with a weak force, they spontaneously relax into ‘dents’ in the potential barrier created by attractive electronic interactions between the reactants. By methodically pressing over all possible orientations, and inducing an artificial reaction from the relaxed positions, AFIR searches can identify every stable reaction pathway in a system.

To the team’s surprise, applying AFIR calculations to the Passerini reaction revealed that four components, not the long-thought three, must be involved (Fig. 1). Since the reaction barriers were so high, the researchers realized that an additional carboxylic acid—a known proton transfer catalyst—had to participate in the transition states leading to the final product. This finding should enable design of Passerini reactions with improved structural selectivity, notes Maeda.

Once perfected, the researchers anticipate their technique will make MCRs even more widespread. “Unlike standard methods, giving only pathways that are easy to find, the AFIR method has a unique ability to find unknown pathways in MCRs systematically,” says Maeda. “Information on reaction pathways is very important even for processes that do not normally occur, because chemists can initiate such reactions by controlling conditions, modifying substituents, and introducing new catalysts.”

Journal information

[1] Maeda, S., Komagawa, S., Uchiyama, M. & Morokuma, K. Finding reaction pathways for multicomponent reactions: The Passerini reaction is a four-component reaction. Angewandte Chemie International Edition 50, 644–649 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>