Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The more the merrier

16.03.2011
Computational search algorithms take the guesswork out of understanding complex, multi-molecule transformations

Multicomponent reactions (MCRs) that chemically combine three or more molecules into a brand new product are faster and generate less waste than traditional step-by-step synthetic procedures, making them invaluable in efforts to improve efficiency and sustainability.

Since 1921, chemists have used an MCR called the Passerini reaction to produce bioactive, peptide-like chains made from three partners: carboxylic acids, carbonyl compounds, and cyanide-bearing molecules. However, a full understanding of this process has eluded researchers because its multipart workings are difficult to detect experimentally.

Now, Satoshi Maeda and Keiji Morokuma from Kyoto University and Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako have developed a computerized way to better identify the hidden mechanisms of one-pot, multi-step chemical transformations[1]. Their technique, the artificial force induced reaction (AFIR), systematically squeezes and joins model compounds together in order to rapidly detect signatures of real MCR energy barriers.

According to Maeda, detailed theoretical understandings of MCRs have been scarce because most calculations require excellent estimates of transition state structures—intermediate and often highly strained geometric arrangements between molecules that correspond to the energetic peak of a reaction barrier. “Consequently, a trial-and-error process based only on [chemistry-based] intuition is unavoidable,” he says.

The AFIR method, on the other hand, requires no such presumptions. Maeda explains that when two molecules are pushed into each other with a weak force, they spontaneously relax into ‘dents’ in the potential barrier created by attractive electronic interactions between the reactants. By methodically pressing over all possible orientations, and inducing an artificial reaction from the relaxed positions, AFIR searches can identify every stable reaction pathway in a system.

To the team’s surprise, applying AFIR calculations to the Passerini reaction revealed that four components, not the long-thought three, must be involved (Fig. 1). Since the reaction barriers were so high, the researchers realized that an additional carboxylic acid—a known proton transfer catalyst—had to participate in the transition states leading to the final product. This finding should enable design of Passerini reactions with improved structural selectivity, notes Maeda.

Once perfected, the researchers anticipate their technique will make MCRs even more widespread. “Unlike standard methods, giving only pathways that are easy to find, the AFIR method has a unique ability to find unknown pathways in MCRs systematically,” says Maeda. “Information on reaction pathways is very important even for processes that do not normally occur, because chemists can initiate such reactions by controlling conditions, modifying substituents, and introducing new catalysts.”

Journal information

[1] Maeda, S., Komagawa, S., Uchiyama, M. & Morokuma, K. Finding reaction pathways for multicomponent reactions: The Passerini reaction is a four-component reaction. Angewandte Chemie International Edition 50, 644–649 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>