Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The more the merrier

Computational search algorithms take the guesswork out of understanding complex, multi-molecule transformations

Multicomponent reactions (MCRs) that chemically combine three or more molecules into a brand new product are faster and generate less waste than traditional step-by-step synthetic procedures, making them invaluable in efforts to improve efficiency and sustainability.

Since 1921, chemists have used an MCR called the Passerini reaction to produce bioactive, peptide-like chains made from three partners: carboxylic acids, carbonyl compounds, and cyanide-bearing molecules. However, a full understanding of this process has eluded researchers because its multipart workings are difficult to detect experimentally.

Now, Satoshi Maeda and Keiji Morokuma from Kyoto University and Shinsuke Komagawa and Masanobu Uchiyama from the RIKEN Advanced Science Institute in Wako have developed a computerized way to better identify the hidden mechanisms of one-pot, multi-step chemical transformations[1]. Their technique, the artificial force induced reaction (AFIR), systematically squeezes and joins model compounds together in order to rapidly detect signatures of real MCR energy barriers.

According to Maeda, detailed theoretical understandings of MCRs have been scarce because most calculations require excellent estimates of transition state structures—intermediate and often highly strained geometric arrangements between molecules that correspond to the energetic peak of a reaction barrier. “Consequently, a trial-and-error process based only on [chemistry-based] intuition is unavoidable,” he says.

The AFIR method, on the other hand, requires no such presumptions. Maeda explains that when two molecules are pushed into each other with a weak force, they spontaneously relax into ‘dents’ in the potential barrier created by attractive electronic interactions between the reactants. By methodically pressing over all possible orientations, and inducing an artificial reaction from the relaxed positions, AFIR searches can identify every stable reaction pathway in a system.

To the team’s surprise, applying AFIR calculations to the Passerini reaction revealed that four components, not the long-thought three, must be involved (Fig. 1). Since the reaction barriers were so high, the researchers realized that an additional carboxylic acid—a known proton transfer catalyst—had to participate in the transition states leading to the final product. This finding should enable design of Passerini reactions with improved structural selectivity, notes Maeda.

Once perfected, the researchers anticipate their technique will make MCRs even more widespread. “Unlike standard methods, giving only pathways that are easy to find, the AFIR method has a unique ability to find unknown pathways in MCRs systematically,” says Maeda. “Information on reaction pathways is very important even for processes that do not normally occur, because chemists can initiate such reactions by controlling conditions, modifying substituents, and introducing new catalysts.”

Journal information

[1] Maeda, S., Komagawa, S., Uchiyama, M. & Morokuma, K. Finding reaction pathways for multicomponent reactions: The Passerini reaction is a four-component reaction. Angewandte Chemie International Edition 50, 644–649 (2011).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>