Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do You Mend a Broken Heart? Maybe Someday with Stem Cells Made from Your Skin

16.02.2009
A little more than a year after University of Wisconsin-Madison scientists showed they could turn skin cells back into stem cells, they have pulsating proof that these “induced” stem cells can indeed form the specialized cells that make up heart muscle.

In a study published online on Feb. 12 in Circulation Research, a journal of the American Heart Association, UW-Madison School of Medicine and Public Health professor of medicine Tim Kamp and his research team showed that they were able to grow working heart-muscle cells (cardiomyocytes) from induced pluripotent stem cells, known as iPS cells.

The heart cells were originally reprogrammed from human skin cells by James Thomson and Junying Yu, two of Kamp’s co-authors on the study.

“It’s an encouraging result because it shows that those cells will be useful for research and may someday be useful in therapy,’’ said Kamp, who is also a cardiologist with UW Health. “If you have a heart failure patient who is in dire straits — and there are never enough donor hearts for transplantation — we may be able to make heart cells from the patient’s skin cells, and use them to repair heart muscle. That’s pretty exciting.”

It’s also a few more discoveries away. The researchers used a virus to insert four transcription factors into the genes of the skin cell, reprogramming it back to an embryo-like state. Because the virus is taken up by the new cell, there is a possibility it eventually could cause cancer, so therapies from reprogrammed skin cells will likely have to wait until new methods are perfected.

Still, the iPS cardiomyocytes should prove immediately useful for research. And Kamp said the speed at which knowledge is progressing is very encouraging.

Jianhua Zhang, lead author on the study, noted that it took 17 years, from when a mouse embryonic stem cells were first created in 1981, to 1998, when Thomson created the first human embryonic stem cells. In contrast, the first mouse iPS stem cells were created in 2006, and Thomson and Yu published their paper in November 2007, announcing the creation of human iPS stem cells that began as a skin cells.

While research on embryonic stem cells is controversial, because it destroys a human embryo, lessons learned through such research apply to current work with iPS cells made from adult cells.

“That’s one of the important things that have come out of the research with embryonic stem cells, it taught us how human pluripotent stem cells behave and how to work with them,’’ Kamp says. “Things are able to progress much more quickly thanks to all the research already done with embryonic stem cells.”

Many types of heart disease have known genetic causes, so creating cardiomyocytes grown from patients who have those diseases will likely be some of the next steps in the research. One of Kamp’s colleagues, Clive Svendsen, a UW-Madison School of Medicine and Public Health professor of neurology and anatomy, has grown the iPS cells into disease-specific neural cells. Kamp and Svendsen are also on the faculty of the Waisman Center and the Stem Cell and Regenerative Medicine Center.

Kamp’s latest research, proving that iPS cells can become functional heart cells, is just one step along the way to better understanding and treatment of disease.

“We’re excited about it, because it’s the some of the first research to show it can be done, but in the future, we’ll probably say, ‘Well, of course it can be done,’” he says. “But you don’t know until you do it. It’s a very mysterious and complicated dance to get these cells to go from skin cells to stem cells to heart cells.”

Susan Lampert Smith | Newswise Science News
Further information:
http://www.uwhealth.org
http://www.news.wisc.edu/newsphotos/heartcells.html
http://www.wisc.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>