Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do You Mend a Broken Heart? Maybe Someday with Stem Cells Made from Your Skin

16.02.2009
A little more than a year after University of Wisconsin-Madison scientists showed they could turn skin cells back into stem cells, they have pulsating proof that these “induced” stem cells can indeed form the specialized cells that make up heart muscle.

In a study published online on Feb. 12 in Circulation Research, a journal of the American Heart Association, UW-Madison School of Medicine and Public Health professor of medicine Tim Kamp and his research team showed that they were able to grow working heart-muscle cells (cardiomyocytes) from induced pluripotent stem cells, known as iPS cells.

The heart cells were originally reprogrammed from human skin cells by James Thomson and Junying Yu, two of Kamp’s co-authors on the study.

“It’s an encouraging result because it shows that those cells will be useful for research and may someday be useful in therapy,’’ said Kamp, who is also a cardiologist with UW Health. “If you have a heart failure patient who is in dire straits — and there are never enough donor hearts for transplantation — we may be able to make heart cells from the patient’s skin cells, and use them to repair heart muscle. That’s pretty exciting.”

It’s also a few more discoveries away. The researchers used a virus to insert four transcription factors into the genes of the skin cell, reprogramming it back to an embryo-like state. Because the virus is taken up by the new cell, there is a possibility it eventually could cause cancer, so therapies from reprogrammed skin cells will likely have to wait until new methods are perfected.

Still, the iPS cardiomyocytes should prove immediately useful for research. And Kamp said the speed at which knowledge is progressing is very encouraging.

Jianhua Zhang, lead author on the study, noted that it took 17 years, from when a mouse embryonic stem cells were first created in 1981, to 1998, when Thomson created the first human embryonic stem cells. In contrast, the first mouse iPS stem cells were created in 2006, and Thomson and Yu published their paper in November 2007, announcing the creation of human iPS stem cells that began as a skin cells.

While research on embryonic stem cells is controversial, because it destroys a human embryo, lessons learned through such research apply to current work with iPS cells made from adult cells.

“That’s one of the important things that have come out of the research with embryonic stem cells, it taught us how human pluripotent stem cells behave and how to work with them,’’ Kamp says. “Things are able to progress much more quickly thanks to all the research already done with embryonic stem cells.”

Many types of heart disease have known genetic causes, so creating cardiomyocytes grown from patients who have those diseases will likely be some of the next steps in the research. One of Kamp’s colleagues, Clive Svendsen, a UW-Madison School of Medicine and Public Health professor of neurology and anatomy, has grown the iPS cells into disease-specific neural cells. Kamp and Svendsen are also on the faculty of the Waisman Center and the Stem Cell and Regenerative Medicine Center.

Kamp’s latest research, proving that iPS cells can become functional heart cells, is just one step along the way to better understanding and treatment of disease.

“We’re excited about it, because it’s the some of the first research to show it can be done, but in the future, we’ll probably say, ‘Well, of course it can be done,’” he says. “But you don’t know until you do it. It’s a very mysterious and complicated dance to get these cells to go from skin cells to stem cells to heart cells.”

Susan Lampert Smith | Newswise Science News
Further information:
http://www.uwhealth.org
http://www.news.wisc.edu/newsphotos/heartcells.html
http://www.wisc.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>