Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Do You Mend a Broken Heart? Maybe Someday with Stem Cells Made from Your Skin

16.02.2009
A little more than a year after University of Wisconsin-Madison scientists showed they could turn skin cells back into stem cells, they have pulsating proof that these “induced” stem cells can indeed form the specialized cells that make up heart muscle.

In a study published online on Feb. 12 in Circulation Research, a journal of the American Heart Association, UW-Madison School of Medicine and Public Health professor of medicine Tim Kamp and his research team showed that they were able to grow working heart-muscle cells (cardiomyocytes) from induced pluripotent stem cells, known as iPS cells.

The heart cells were originally reprogrammed from human skin cells by James Thomson and Junying Yu, two of Kamp’s co-authors on the study.

“It’s an encouraging result because it shows that those cells will be useful for research and may someday be useful in therapy,’’ said Kamp, who is also a cardiologist with UW Health. “If you have a heart failure patient who is in dire straits — and there are never enough donor hearts for transplantation — we may be able to make heart cells from the patient’s skin cells, and use them to repair heart muscle. That’s pretty exciting.”

It’s also a few more discoveries away. The researchers used a virus to insert four transcription factors into the genes of the skin cell, reprogramming it back to an embryo-like state. Because the virus is taken up by the new cell, there is a possibility it eventually could cause cancer, so therapies from reprogrammed skin cells will likely have to wait until new methods are perfected.

Still, the iPS cardiomyocytes should prove immediately useful for research. And Kamp said the speed at which knowledge is progressing is very encouraging.

Jianhua Zhang, lead author on the study, noted that it took 17 years, from when a mouse embryonic stem cells were first created in 1981, to 1998, when Thomson created the first human embryonic stem cells. In contrast, the first mouse iPS stem cells were created in 2006, and Thomson and Yu published their paper in November 2007, announcing the creation of human iPS stem cells that began as a skin cells.

While research on embryonic stem cells is controversial, because it destroys a human embryo, lessons learned through such research apply to current work with iPS cells made from adult cells.

“That’s one of the important things that have come out of the research with embryonic stem cells, it taught us how human pluripotent stem cells behave and how to work with them,’’ Kamp says. “Things are able to progress much more quickly thanks to all the research already done with embryonic stem cells.”

Many types of heart disease have known genetic causes, so creating cardiomyocytes grown from patients who have those diseases will likely be some of the next steps in the research. One of Kamp’s colleagues, Clive Svendsen, a UW-Madison School of Medicine and Public Health professor of neurology and anatomy, has grown the iPS cells into disease-specific neural cells. Kamp and Svendsen are also on the faculty of the Waisman Center and the Stem Cell and Regenerative Medicine Center.

Kamp’s latest research, proving that iPS cells can become functional heart cells, is just one step along the way to better understanding and treatment of disease.

“We’re excited about it, because it’s the some of the first research to show it can be done, but in the future, we’ll probably say, ‘Well, of course it can be done,’” he says. “But you don’t know until you do it. It’s a very mysterious and complicated dance to get these cells to go from skin cells to stem cells to heart cells.”

Susan Lampert Smith | Newswise Science News
Further information:
http://www.uwhealth.org
http://www.news.wisc.edu/newsphotos/heartcells.html
http://www.wisc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>