Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"Memory region" of the brain also involved in conflict resolution


The hippocampus in the brain's temporal lobe is responsible for more than just long-term memory. Researchers have for the first time demonstrated that it is also involved in quick and successful conflict resolution. The team headed by Prof Dr Nikolai Axmacher from the Ruhr-Universität Bochum (RUB), together with colleagues from the University Hospital of Bonn as well as in Aachen and Birmingham, reported in the journal "Current Biology".

Decision conflicts occur often in everyday life

In situations of conflict, people have to decide fast what to do. The hippocampus seems to be involved in this process.

RUB, photo: Marquard

The hippocampus is particularly active when a person solves conflicts quickly and successfully.

RUB, graphics: Bierstedt

In their everyday life, people are constantly confronted with decision conflicts, especially if they need to suppress an action that would have made sense under normal circumstances. For example: when the pedestrian lights go green, a pedestrian would normally start walking. If, however, a car comes speeding along at the same time, the pedestrian should stay where he is.

In their experiment, researchers opted for a less threatening situation. Test participants heard the words "high" or "low” spoken in a high or low tone, and they had to state – regardless of the meaning of the word – at what pitch the speaker said them. If the pitch doesn't correspond with the meaning of the word, a conflict is generated: the participants would answer more slowly and make more mistakes.

Results confirmed with two measurement methods

The team demonstrated with two different measurement methods that the hippocampus is active in such conflicting situations; this applies particularly when a person solves the conflicts quickly and successfully. Nikolai Axmacher from the Institute of Cognitive Neuroscience and his colleagues analysed the brain activity in healthy participants with functional magnetic resonance imaging.

They gained the same results in epilepsy patients who had EEG electrodes implanted in the hippocampus for the purpose of surgery planning; this is how the researchers could measure the activity in that brain region directly.

Memory system could learn from resolved conflicts

Because the hippocampus is essential for memory, the researchers speculate about its role in conflict resolution: "Our data show first of all a completely new function of the Hippocampus – processing of activity conflicts," says Carina Oehrn from the Department of Epileptology at the University Hospital of Bonn. "However, in order to answer the question how that function interacts with memory processes, we will have to carry out additional tests."

"Perhaps the memory system becomes particularly active if a conflict has been successfully resolved," speculates Nikolai Axmacher. "Permanently unsolved conflicts can't be used for learning helpful lessons for the future. According to our model, the brain works like a filter. It responds strongly to resolved conflicts, but not to unsolved conflicts or standard situations. However, we have to verify this hypothesis in additional studies."

Bibliographic record

C.R. Oehrn, C. Baumann, J. Fell, H. Lee, H. Kessler, U. Habel, S. Hanslmayr, N. Axmacher (2015): Human hippocampal dynamics during response conflict, Current Biology, DOI: 10.1016/j.cub.2015.07.032

Further information

Prof Dr Nikolai Axmacher, Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/234/32-22674, email:

Carina Oehrn, Department of Epileptology, University Hospital of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany, Phone: +49/228 287-19345, Email:

Editor: Dr Julia Weiler

Jens Wylkop | Ruhr-Universität Bochum
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>