Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Memory in silent neurons


When we learn, we associate a sensory experience either with other stimuli or with a certain type of behaviour.

The neurons in the cerebral cortex that transmit the information modify the synaptic connections that they have with the other neurons. According to a generally-accepted model of synaptic plasticity, a neuron that communicates with others of the same kind emits an electrical impulse as well as activating its synapses transiently.

This electrical pulse, combined with the signal received from other neurons, acts to stimulate the synapses. How is it that some neurons are caught up in the communication interplay even when they are barely connected?

This is the crucial chicken-or-egg puzzle of synaptic plasticity that a team led by Anthony Holtmaat, professor in the Department of Basic Neurosciences in the Faculty of Medicine at UNIGE, is aiming to solve. The results of their research into memory in silent neurons can be found in the latest edition of Nature.

Learning and memory are governed by a mechanism of sustainable synaptic strengthening. When we embark on a learning experience, our brain associates a sensory experience either with other stimuli or with a certain form of behaviour.

The neurons in the cerebral cortex responsible for ensuring the transmission of the relevant information, then modify the synaptic connections that they have with other neurons. This is the very arrangement that subsequently enables the brain to optimise the way information is processed when it is met again, as well as predicting its consequences.

Neuroscientists typically induce electrical pulses in the neurons artificially in order to perform research on synaptic mechanisms.

The neuroscientists from UNIGE, however, chose a different approach in their attempt to discover what happens naturally in the neurons when they receive sensory stimuli. They observed the cerebral cortices of mice whose whiskers were repeatedly stimulated mechanically without an artificially-induced electrical pulse. The rodents use their whiskers as a sensor for navigating and interacting; they are, therefore, a key element for perception in mice.

An extremely low signal is enough

By observing these natural stimuli, professor Holtmaat's team was able to demonstrate that sensory stimulus alone can generate long-term synaptic strengthening without the neuron discharging either an induced or natural electrical pulse. As a result – and contrary to what was previously believed – the synapses will be strengthened even when the neurons involved in a stimulus remain silent.

In addition, if the sensory stimulation lasts over time, the synapses become so strong that the neuron in turn is activated and becomes fully engaged in the neural network. Once activated, the neuron can then further strengthen the synapses in a forwards and backwards movement. These findings could solve the brain's "What came first?" mystery, as they make it possible to examine all the synaptic pathways that contribute to memory, rather than focusing on whether it is the synapsis or the neuron that activates the other.

The entire brain is mobilised

A second discovery lay in store for the researchers. During the same experiment, they were also able to establish that the stimuli that were most effective in strengthening the synapses came from secondary, non-cortical brain regions rather than major cortical pathways (which convey actual sensory information). Accordingly, storing information would simply require the co-activation of several synaptic pathways in the neuron, even if the latter remains silent.

These findings may also have important implications both for the way we understand learning mechanisms and for therapeutic possibilities, in particular for rehabilitation following a stroke or in neurodegenerative disorders. As professor Holtmaat explains: "It is possible that sensory stimulation, when combined with another activity (motor activity, for example), works better for strengthening synaptic connections". The professor concludes: "In the context of therapy, you could combine two different stimuli as a way of enhancing the effectiveness."

Anthony Holtmaat | Eurek Alert!

Further reports about: UNIGE activity cerebral neurons plasticity sensory stimuli stimulus synaptic

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>