Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory in silent neurons

01.09.2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behaviour.

The neurons in the cerebral cortex that transmit the information modify the synaptic connections that they have with the other neurons. According to a generally-accepted model of synaptic plasticity, a neuron that communicates with others of the same kind emits an electrical impulse as well as activating its synapses transiently.

This electrical pulse, combined with the signal received from other neurons, acts to stimulate the synapses. How is it that some neurons are caught up in the communication interplay even when they are barely connected?

This is the crucial chicken-or-egg puzzle of synaptic plasticity that a team led by Anthony Holtmaat, professor in the Department of Basic Neurosciences in the Faculty of Medicine at UNIGE, is aiming to solve. The results of their research into memory in silent neurons can be found in the latest edition of Nature.

Learning and memory are governed by a mechanism of sustainable synaptic strengthening. When we embark on a learning experience, our brain associates a sensory experience either with other stimuli or with a certain form of behaviour.

The neurons in the cerebral cortex responsible for ensuring the transmission of the relevant information, then modify the synaptic connections that they have with other neurons. This is the very arrangement that subsequently enables the brain to optimise the way information is processed when it is met again, as well as predicting its consequences.

Neuroscientists typically induce electrical pulses in the neurons artificially in order to perform research on synaptic mechanisms.

The neuroscientists from UNIGE, however, chose a different approach in their attempt to discover what happens naturally in the neurons when they receive sensory stimuli. They observed the cerebral cortices of mice whose whiskers were repeatedly stimulated mechanically without an artificially-induced electrical pulse. The rodents use their whiskers as a sensor for navigating and interacting; they are, therefore, a key element for perception in mice.

An extremely low signal is enough

By observing these natural stimuli, professor Holtmaat's team was able to demonstrate that sensory stimulus alone can generate long-term synaptic strengthening without the neuron discharging either an induced or natural electrical pulse. As a result – and contrary to what was previously believed – the synapses will be strengthened even when the neurons involved in a stimulus remain silent.

In addition, if the sensory stimulation lasts over time, the synapses become so strong that the neuron in turn is activated and becomes fully engaged in the neural network. Once activated, the neuron can then further strengthen the synapses in a forwards and backwards movement. These findings could solve the brain's "What came first?" mystery, as they make it possible to examine all the synaptic pathways that contribute to memory, rather than focusing on whether it is the synapsis or the neuron that activates the other.

The entire brain is mobilised

A second discovery lay in store for the researchers. During the same experiment, they were also able to establish that the stimuli that were most effective in strengthening the synapses came from secondary, non-cortical brain regions rather than major cortical pathways (which convey actual sensory information). Accordingly, storing information would simply require the co-activation of several synaptic pathways in the neuron, even if the latter remains silent.

These findings may also have important implications both for the way we understand learning mechanisms and for therapeutic possibilities, in particular for rehabilitation following a stroke or in neurodegenerative disorders. As professor Holtmaat explains: "It is possible that sensory stimulation, when combined with another activity (motor activity, for example), works better for strengthening synaptic connections". The professor concludes: "In the context of therapy, you could combine two different stimuli as a way of enhancing the effectiveness."

Anthony Holtmaat | Eurek Alert!

Further reports about: UNIGE activity cerebral neurons plasticity sensory stimuli stimulus synaptic

More articles from Life Sciences:

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

nachricht NIH researchers identify striking genomic signature shared by 5 types of cancer
05.02.2016 | NIH/National Human Genome Research Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

Im Focus: Energy-saving minicomputers for the ‘Internet of Things’

The ‘Internet of Things’ is growing rapidly. Mobile phones, washing machines and the milk bottle in the fridge: the idea is that minicomputers connected to these will be able to process information, receive and send data. This requires electrical power. Transistors that are capable of switching information with a single electron use far less power than field effect transistors that are commonly used in computers. However, these innovative electronic switches do not yet work at room temperature. Scientists working on the new EU research project ‘Ions4Set’ intend to change this. The program will be launched on February 1. It is coordinated by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

“Billions of tiny computers will in future communicate with each other via the Internet or locally. Yet power consumption currently remains a great obstacle”,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

A new potential biomarker for cancer imaging

05.02.2016 | Life Sciences

Graphene is strong, but is it tough?

05.02.2016 | Materials Sciences

Tiniest Particles Shrink Before Exploding When Hit With SLAC's X-ray Laser

05.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>