Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memory in silent neurons

01.09.2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behaviour.

The neurons in the cerebral cortex that transmit the information modify the synaptic connections that they have with the other neurons. According to a generally-accepted model of synaptic plasticity, a neuron that communicates with others of the same kind emits an electrical impulse as well as activating its synapses transiently.

This electrical pulse, combined with the signal received from other neurons, acts to stimulate the synapses. How is it that some neurons are caught up in the communication interplay even when they are barely connected?

This is the crucial chicken-or-egg puzzle of synaptic plasticity that a team led by Anthony Holtmaat, professor in the Department of Basic Neurosciences in the Faculty of Medicine at UNIGE, is aiming to solve. The results of their research into memory in silent neurons can be found in the latest edition of Nature.

Learning and memory are governed by a mechanism of sustainable synaptic strengthening. When we embark on a learning experience, our brain associates a sensory experience either with other stimuli or with a certain form of behaviour.

The neurons in the cerebral cortex responsible for ensuring the transmission of the relevant information, then modify the synaptic connections that they have with other neurons. This is the very arrangement that subsequently enables the brain to optimise the way information is processed when it is met again, as well as predicting its consequences.

Neuroscientists typically induce electrical pulses in the neurons artificially in order to perform research on synaptic mechanisms.

The neuroscientists from UNIGE, however, chose a different approach in their attempt to discover what happens naturally in the neurons when they receive sensory stimuli. They observed the cerebral cortices of mice whose whiskers were repeatedly stimulated mechanically without an artificially-induced electrical pulse. The rodents use their whiskers as a sensor for navigating and interacting; they are, therefore, a key element for perception in mice.

An extremely low signal is enough

By observing these natural stimuli, professor Holtmaat's team was able to demonstrate that sensory stimulus alone can generate long-term synaptic strengthening without the neuron discharging either an induced or natural electrical pulse. As a result – and contrary to what was previously believed – the synapses will be strengthened even when the neurons involved in a stimulus remain silent.

In addition, if the sensory stimulation lasts over time, the synapses become so strong that the neuron in turn is activated and becomes fully engaged in the neural network. Once activated, the neuron can then further strengthen the synapses in a forwards and backwards movement. These findings could solve the brain's "What came first?" mystery, as they make it possible to examine all the synaptic pathways that contribute to memory, rather than focusing on whether it is the synapsis or the neuron that activates the other.

The entire brain is mobilised

A second discovery lay in store for the researchers. During the same experiment, they were also able to establish that the stimuli that were most effective in strengthening the synapses came from secondary, non-cortical brain regions rather than major cortical pathways (which convey actual sensory information). Accordingly, storing information would simply require the co-activation of several synaptic pathways in the neuron, even if the latter remains silent.

These findings may also have important implications both for the way we understand learning mechanisms and for therapeutic possibilities, in particular for rehabilitation following a stroke or in neurodegenerative disorders. As professor Holtmaat explains: "It is possible that sensory stimulation, when combined with another activity (motor activity, for example), works better for strengthening synaptic connections". The professor concludes: "In the context of therapy, you could combine two different stimuli as a way of enhancing the effectiveness."

Anthony Holtmaat | Eurek Alert!

Further reports about: UNIGE activity cerebral neurons plasticity sensory stimuli stimulus synaptic

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>