Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories of the way they used to be

21.09.2009
Human iPS cells retain some gene expression of donor cells

A team of researchers from the University of California, San Diego School of Medicine and the Salk Institute for Biological Studies in La Jolla have developed a safe strategy for reprogramming cells to a pluripotent state without use of viral vectors or genomic insertions.

Their studies reveal that these induced pluripotent stem cells (iPSCs) are very similar to human embryonic stem cells, yet maintain a "transcriptional signature." In essence, these cells retain some memory of the donor cells they once were.

The study, led by UCSD Stem Cell Program researcher Alysson R. Muotri, assistant professor in the Departments of Pediatrics at UCSD and Rady Children's Hospital and UCSD's Department of Cellular and Molecular Medicine, will be published online in PLoS ONE on September 17.

"Working with neural stem cells, we discovered that a single factor can be used to re-program a human cell into a pluripotent state, one with the ability to differentiate into any type of cell in the body" said Muotri. Traditionally, a combination of four factors was used to create iPSCs, in a technology using viral vectors – viruses with the potential to affect the transcriptional profile of cells, sometimes inducing cell death or tumors.

In addition, while both mouse and human iPSCs have been shown to be similar to embryonic stem cells in terms of cell behavior, gene expression and their potential to differentiate into different types of cells, researchers had not achieved a comprehensive analysis to compare iPSCs and embryonic stem cells.

"One reason is that previous methodologies used to derive iPSCs weren't 'footprint free,'" Muotri explained. "Viruses could integrate into the genome of the cell, possibly affecting or disrupting genes."

"In order to take full advantage of reprogramming, it is essential to develop methods to induce pluripotency in the absence of permanent changes in the genome," added Fred H. Gage, PhD, a professor in the Laboratory for Genetics at the Salk Institute and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

By creating iPSCs from human neural stem cells without the use of viruses, the scientists learned something new. While the genetic transcriptional profile of the new iPSCs was closer to that of embryonic stem cells than to human neural stem cells, the iPSCs still carried a transcriptional "signature" of the original neural cell.

"While most of the original genetic memory was erased when the cells were reprogrammed, some were retained," said Muotri. He added that, in the past, it wasn't known if this was caused by the use of viral vectors. "By using a footprint-free methodology, we have shown a safe way to generate human iPSCs for clinical purposes and basic research. We've also raised an interesting question about what, if any, effect the 'memory retention' of these cells might have."

Additional contributors to the study include Gene W. Yeo, UCSD's Department of Cellular and Molecular Medicine and the UCSD Stem Cell Program; Osamu Kainohana and Martin Marsala, UCSD Department of Anesthesiology; and Maria C. N. Marchetto and Fred H. Gage, the Salk Institute for Biological Studies, La Jolla, CA.

The research was supported by startup funds from the UCSD Stem Cell Research Program, and by grants from the California Institute of Regenerative Medicine and The Lookout Fund Foundation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>