Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Memories of the way they used to be

Human iPS cells retain some gene expression of donor cells

A team of researchers from the University of California, San Diego School of Medicine and the Salk Institute for Biological Studies in La Jolla have developed a safe strategy for reprogramming cells to a pluripotent state without use of viral vectors or genomic insertions.

Their studies reveal that these induced pluripotent stem cells (iPSCs) are very similar to human embryonic stem cells, yet maintain a "transcriptional signature." In essence, these cells retain some memory of the donor cells they once were.

The study, led by UCSD Stem Cell Program researcher Alysson R. Muotri, assistant professor in the Departments of Pediatrics at UCSD and Rady Children's Hospital and UCSD's Department of Cellular and Molecular Medicine, will be published online in PLoS ONE on September 17.

"Working with neural stem cells, we discovered that a single factor can be used to re-program a human cell into a pluripotent state, one with the ability to differentiate into any type of cell in the body" said Muotri. Traditionally, a combination of four factors was used to create iPSCs, in a technology using viral vectors – viruses with the potential to affect the transcriptional profile of cells, sometimes inducing cell death or tumors.

In addition, while both mouse and human iPSCs have been shown to be similar to embryonic stem cells in terms of cell behavior, gene expression and their potential to differentiate into different types of cells, researchers had not achieved a comprehensive analysis to compare iPSCs and embryonic stem cells.

"One reason is that previous methodologies used to derive iPSCs weren't 'footprint free,'" Muotri explained. "Viruses could integrate into the genome of the cell, possibly affecting or disrupting genes."

"In order to take full advantage of reprogramming, it is essential to develop methods to induce pluripotency in the absence of permanent changes in the genome," added Fred H. Gage, PhD, a professor in the Laboratory for Genetics at the Salk Institute and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

By creating iPSCs from human neural stem cells without the use of viruses, the scientists learned something new. While the genetic transcriptional profile of the new iPSCs was closer to that of embryonic stem cells than to human neural stem cells, the iPSCs still carried a transcriptional "signature" of the original neural cell.

"While most of the original genetic memory was erased when the cells were reprogrammed, some were retained," said Muotri. He added that, in the past, it wasn't known if this was caused by the use of viral vectors. "By using a footprint-free methodology, we have shown a safe way to generate human iPSCs for clinical purposes and basic research. We've also raised an interesting question about what, if any, effect the 'memory retention' of these cells might have."

Additional contributors to the study include Gene W. Yeo, UCSD's Department of Cellular and Molecular Medicine and the UCSD Stem Cell Program; Osamu Kainohana and Martin Marsala, UCSD Department of Anesthesiology; and Maria C. N. Marchetto and Fred H. Gage, the Salk Institute for Biological Studies, La Jolla, CA.

The research was supported by startup funds from the UCSD Stem Cell Research Program, and by grants from the California Institute of Regenerative Medicine and The Lookout Fund Foundation.

Debra Kain | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>