Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories of the way they used to be

21.09.2009
Human iPS cells retain some gene expression of donor cells

A team of researchers from the University of California, San Diego School of Medicine and the Salk Institute for Biological Studies in La Jolla have developed a safe strategy for reprogramming cells to a pluripotent state without use of viral vectors or genomic insertions.

Their studies reveal that these induced pluripotent stem cells (iPSCs) are very similar to human embryonic stem cells, yet maintain a "transcriptional signature." In essence, these cells retain some memory of the donor cells they once were.

The study, led by UCSD Stem Cell Program researcher Alysson R. Muotri, assistant professor in the Departments of Pediatrics at UCSD and Rady Children's Hospital and UCSD's Department of Cellular and Molecular Medicine, will be published online in PLoS ONE on September 17.

"Working with neural stem cells, we discovered that a single factor can be used to re-program a human cell into a pluripotent state, one with the ability to differentiate into any type of cell in the body" said Muotri. Traditionally, a combination of four factors was used to create iPSCs, in a technology using viral vectors – viruses with the potential to affect the transcriptional profile of cells, sometimes inducing cell death or tumors.

In addition, while both mouse and human iPSCs have been shown to be similar to embryonic stem cells in terms of cell behavior, gene expression and their potential to differentiate into different types of cells, researchers had not achieved a comprehensive analysis to compare iPSCs and embryonic stem cells.

"One reason is that previous methodologies used to derive iPSCs weren't 'footprint free,'" Muotri explained. "Viruses could integrate into the genome of the cell, possibly affecting or disrupting genes."

"In order to take full advantage of reprogramming, it is essential to develop methods to induce pluripotency in the absence of permanent changes in the genome," added Fred H. Gage, PhD, a professor in the Laboratory for Genetics at the Salk Institute and the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

By creating iPSCs from human neural stem cells without the use of viruses, the scientists learned something new. While the genetic transcriptional profile of the new iPSCs was closer to that of embryonic stem cells than to human neural stem cells, the iPSCs still carried a transcriptional "signature" of the original neural cell.

"While most of the original genetic memory was erased when the cells were reprogrammed, some were retained," said Muotri. He added that, in the past, it wasn't known if this was caused by the use of viral vectors. "By using a footprint-free methodology, we have shown a safe way to generate human iPSCs for clinical purposes and basic research. We've also raised an interesting question about what, if any, effect the 'memory retention' of these cells might have."

Additional contributors to the study include Gene W. Yeo, UCSD's Department of Cellular and Molecular Medicine and the UCSD Stem Cell Program; Osamu Kainohana and Martin Marsala, UCSD Department of Anesthesiology; and Maria C. N. Marchetto and Fred H. Gage, the Salk Institute for Biological Studies, La Jolla, CA.

The research was supported by startup funds from the UCSD Stem Cell Research Program, and by grants from the California Institute of Regenerative Medicine and The Lookout Fund Foundation.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>