Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Membranes in tight corners

10.07.2013
Photosynthesis takes place in specialized membrane systems, made up of stacked disks linked together by unstacked planar leaflets. An LMU team has now identified a protein that tucks the membrane in at the edge of each stack.

By making use of sunlight to generate molecular oxygen and other energy-rich chemical compounds that other organisms can utilize as nutrients, photosynthesis provides the basis for almost all life on Earth.


Scanning electron microscopy (SEM) micrograph of a chloroplast in maize (Zea mays) showing thylakoids (green) and assimilation starch granules (grey). (Prepared by freeze fracturing; micrograph is pseudo-colored.) (Source: G. Wanner LMU)

Radiant energy from the Sun is captured by pigment-protein complexes embedded in specialized membrane systems called thylakoids. The thylakoids of green plants reside within organelles called chloroplasts, membrane-bounded compartments in the cell cytoplasm that serve as self-contained reaction vessels.

Thylakoids are made of stacks of 5 to 20 flat membrane sacs called grana, and extended planar membrane sheets that serve to interconnect them, so that all thylakoids in a chloroplast form a continuous network. To form the stacks of appressed sacs, the membrane must be bent into a tight fold at their edges. This implies that the thylakoid membranes forming the grana stacks must somehow be induced to curve at regular intervals. “The origin of the stacked organization of the thylakoids and the local alterations in membrane curvature has been a complete mystery up to now,” says LMU biologist Professor Dario Leister.

Leaning into the curve with CURT1

Leister and his group have now identified a new family of proteins, whose members spontaneously cause membranes to bend. The researchers call them CURT1 proteins (for CURvature of Thylakoids). “Without CURT1 proteins, there are no stacks,” Leister reports. Using the model plant Arabidopsis, he and his colleagues have been able to show that the concentration of CURT is directly correlated with the number of thylakoid stacks in chloroplasts. CURT1 itself is primarily localized at the edges of the grana, exactly where the membrane is maximally curved. In addition, the researchers have shown in the test-tube that isolated CURT1 molecules spontaneously assemble into larger complexes that can alter the curvature of membranes. “It is therefore likely that the aggregation of several CURT1 molecules plays an important role in the formation of thylakoid stacks in the chloroplasts,” Leister concludes.

In the longer term, the new findings could contribute to the optimization of photosynthesis. The grana stacks in the thylakoids are enriched for the antennal proteins that gather and channel light energy and the reaction centers known as Photosystem II. They are therefore, in many respects, more efficient energy converters than the single-layered membrane sheets that connect them together, which harbor Photosystem I. Understanding how CURT1 functions might therefore allow one to increase the degree of stacking and enhance the efficiency of photosynthesis – and perhaps increase yields from crop plants. In cooperation with the Edmund Mach Foundation (Trento, Italy) and the University of Trento, the authors of the new study have applied for patent protection for the use of CURT1 in this setting.

The study was carried out in the context of Collaborative Research Center SFB-TR 1 (Endosymbiosis: From Prokaryotes to Eukaryotic Organelles), and was financed by the DFG.

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de

Further reports about: CURT1 LMU Membranes Photosystem crop plant protein complex

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>