Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Membrane-coat proteins: bacteria have them too

20.01.2010
EMBL discovery could yield evolutionary insights and new model organism

Although they are present almost everywhere, on land and sea, a group of related bacteria in the superphylum Planctomycetes-Verrucomicrobia-Chlamydiae, or PVC, have remained in relative obscurity ever since they were first described about a decade ago.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have discovered that these poorly-studied bacteria possess proteins thought to exist only in eukaryotes – organisms whose cells have a nucleus. Their findings, featured on the cover of today’s edition of PLoS Biology, could help to unravel part of the evolutionary history of eukaryotic cells such as our own.

In eukaryotes, the endomembrane system is a network of membrane-bound compartments which stores and transports material within the cell. These compartments, which include organelles such as the endoplasmic reticulum and the Golgi complex, also exchange portions of membrane with each other, by forming and absorbing vesicles.

Scientists believed that membrane-bound compartments were unique to eukaryotic cells, and that membrane-coat proteins, which have a unique architecture and are associated with the endomembrane system, existed only in eukaryotes. Recently, however, membrane-bound compartments were observed in PVC bacteria.

In the new study, researchers in the group of Iain Mattaj, Director General of EMBL, are the first to provide molecular evidence that the coat proteins that shape the eukaryotic endomembrane system also exist in prokaryotes. Using a combination of bioinformatics, molecular biology and electron microscopy, the EMBL scientists found that proteins with the characteristic membrane-coat architecture also exist in members of the PVC group, but not in any other bacteria, in association with the membranes of subcellular compartments.

“Our findings provide unexpected clues as to how the endomembrane system of eukaryotes evolved,” says Damien Devos, who led the study, “and since they are relatively simple cells, these bacteria could be used as model organisms for studying how this system works.”

Sonia Furtado | EMBL
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>