Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel membrane for climate protection and medicine technology

30.10.2013
Polymer scientists in Mainz develop a membrane for separating and enriching gas. Future application in heart-lung machines and in more efficient gas filters.

A research team from the Max Planck Institute for Polymer Research (MPI-P), under the director Hans-Jürgen Butt and his project leader Doris Vollmer, have developed a novel kind of membrane with which gases such as carbon dioxide (CO2) can be concentrated in vapour and liquids as required or separated from them.

This scientific breakthrough was announced in the scientific journal "Nature Communications". The membrane’s properties are based on a strong liquid-repellent (superamphiphobic) coating not only improving gas exchange but at the same time protecting its pores from clogging. The life-saving oxygenation of blood with heart-lung machines may take place far more reliably than until now. Hans-Jürgen Butt sees potential for further application in the medical and industrial field: “Gas exchange is definitely the largest field of application. The membrane could be used in the fields of climate protection as well as in the biomedical sectors”, explains the Max Planck director.

The basics for the superamphiphobic coating result from previous research work done by the surface physicists using candle soot whose combined structure of microscopic pellets has a far better self-cleaning effect than a lotus leaf. Soot is, however, not stable but can be used as a template for resistant coatings. The Mainz researchers coated the candle soot with silicon oxide and subsequently burnt away the soot. This remaining silicon oxide layer with an average thickness of just 20 nanometers was then coated with a semi-fluorinated silane in order to achieve the water- and oil-repellent effect.

Experiments show that the nanostructural design from the Mainz laboratories not only withstand water and oils but also blood, soap solutions and amines and can be produced with little effort. Until quite recently this property was hardly conceivable; in Mainz it was given the name „superamphiphobic“ as the logical deduction from the opposite of „amphiphilic“, which describes substances which like water as well as oil.

A fine mesh of stainless steel is used as a membrane substrate onto which the superamphiphobic layer is brought. During gas exchange the nanostructured side of the membrane comes into contact with the liquid while at the same time gas is transported past the back side. The gas molecules drift in between the gaps of the highly porous network. High gas exchange is reached even with a low flow rate thereby lowering the risk of thrombosis when blood is fed with oxygen. The particular advantage: The membrane pores do not thereby clog. In tests, compared with Teflon blood did not leave any traces on the membrane even after several hours of contact – an elementary requirement for application in heart-lung machines.

With the gas exchange rates achieved from experiments encouraging industrial applications can be expected, including enrichment of CO2. With this membrane can not only enrichment but also filtration processes be carried out. For example, fine particles from the air were filtrated and fixated in limewash and water. CO2 could pass through the membrane in amine solutions, an established CO2 storage medium, which is an important step on the road to final deposition of CO2.

Universal liquid-repellent surfaces offer an exciting field of research. On the one hand, they enable a better understanding of fundamental function principles of surface coating, interaction of liquids with solids and flow characteristics of liquids. On the other hand, the phenomena superamphiphobicity is interesting, but still largely unexplored, for the application in industry and medicine or for climate protection.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2013 a total of 551 people were working at the MPI-P. The work force was made up of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists, and 195 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.nature.com/ncomms/2013/130925/ncomms3512/full/ncomms3512.html
- the Publication at Nature Communication
http://www.mpip-mainz.mpg.de/1959508/PM13-13en
- more information and pictures at the mpip homepage

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>