Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel membrane for climate protection and medicine technology

30.10.2013
Polymer scientists in Mainz develop a membrane for separating and enriching gas. Future application in heart-lung machines and in more efficient gas filters.

A research team from the Max Planck Institute for Polymer Research (MPI-P), under the director Hans-Jürgen Butt and his project leader Doris Vollmer, have developed a novel kind of membrane with which gases such as carbon dioxide (CO2) can be concentrated in vapour and liquids as required or separated from them.

This scientific breakthrough was announced in the scientific journal "Nature Communications". The membrane’s properties are based on a strong liquid-repellent (superamphiphobic) coating not only improving gas exchange but at the same time protecting its pores from clogging. The life-saving oxygenation of blood with heart-lung machines may take place far more reliably than until now. Hans-Jürgen Butt sees potential for further application in the medical and industrial field: “Gas exchange is definitely the largest field of application. The membrane could be used in the fields of climate protection as well as in the biomedical sectors”, explains the Max Planck director.

The basics for the superamphiphobic coating result from previous research work done by the surface physicists using candle soot whose combined structure of microscopic pellets has a far better self-cleaning effect than a lotus leaf. Soot is, however, not stable but can be used as a template for resistant coatings. The Mainz researchers coated the candle soot with silicon oxide and subsequently burnt away the soot. This remaining silicon oxide layer with an average thickness of just 20 nanometers was then coated with a semi-fluorinated silane in order to achieve the water- and oil-repellent effect.

Experiments show that the nanostructural design from the Mainz laboratories not only withstand water and oils but also blood, soap solutions and amines and can be produced with little effort. Until quite recently this property was hardly conceivable; in Mainz it was given the name „superamphiphobic“ as the logical deduction from the opposite of „amphiphilic“, which describes substances which like water as well as oil.

A fine mesh of stainless steel is used as a membrane substrate onto which the superamphiphobic layer is brought. During gas exchange the nanostructured side of the membrane comes into contact with the liquid while at the same time gas is transported past the back side. The gas molecules drift in between the gaps of the highly porous network. High gas exchange is reached even with a low flow rate thereby lowering the risk of thrombosis when blood is fed with oxygen. The particular advantage: The membrane pores do not thereby clog. In tests, compared with Teflon blood did not leave any traces on the membrane even after several hours of contact – an elementary requirement for application in heart-lung machines.

With the gas exchange rates achieved from experiments encouraging industrial applications can be expected, including enrichment of CO2. With this membrane can not only enrichment but also filtration processes be carried out. For example, fine particles from the air were filtrated and fixated in limewash and water. CO2 could pass through the membrane in amine solutions, an established CO2 storage medium, which is an important step on the road to final deposition of CO2.

Universal liquid-repellent surfaces offer an exciting field of research. On the one hand, they enable a better understanding of fundamental function principles of surface coating, interaction of liquids with solids and flow characteristics of liquids. On the other hand, the phenomena superamphiphobicity is interesting, but still largely unexplored, for the application in industry and medicine or for climate protection.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2013 a total of 551 people were working at the MPI-P. The work force was made up of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists, and 195 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.nature.com/ncomms/2013/130925/ncomms3512/full/ncomms3512.html
- the Publication at Nature Communication
http://www.mpip-mainz.mpg.de/1959508/PM13-13en
- more information and pictures at the mpip homepage

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>