Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel membrane for climate protection and medicine technology

30.10.2013
Polymer scientists in Mainz develop a membrane for separating and enriching gas. Future application in heart-lung machines and in more efficient gas filters.

A research team from the Max Planck Institute for Polymer Research (MPI-P), under the director Hans-Jürgen Butt and his project leader Doris Vollmer, have developed a novel kind of membrane with which gases such as carbon dioxide (CO2) can be concentrated in vapour and liquids as required or separated from them.

This scientific breakthrough was announced in the scientific journal "Nature Communications". The membrane’s properties are based on a strong liquid-repellent (superamphiphobic) coating not only improving gas exchange but at the same time protecting its pores from clogging. The life-saving oxygenation of blood with heart-lung machines may take place far more reliably than until now. Hans-Jürgen Butt sees potential for further application in the medical and industrial field: “Gas exchange is definitely the largest field of application. The membrane could be used in the fields of climate protection as well as in the biomedical sectors”, explains the Max Planck director.

The basics for the superamphiphobic coating result from previous research work done by the surface physicists using candle soot whose combined structure of microscopic pellets has a far better self-cleaning effect than a lotus leaf. Soot is, however, not stable but can be used as a template for resistant coatings. The Mainz researchers coated the candle soot with silicon oxide and subsequently burnt away the soot. This remaining silicon oxide layer with an average thickness of just 20 nanometers was then coated with a semi-fluorinated silane in order to achieve the water- and oil-repellent effect.

Experiments show that the nanostructural design from the Mainz laboratories not only withstand water and oils but also blood, soap solutions and amines and can be produced with little effort. Until quite recently this property was hardly conceivable; in Mainz it was given the name „superamphiphobic“ as the logical deduction from the opposite of „amphiphilic“, which describes substances which like water as well as oil.

A fine mesh of stainless steel is used as a membrane substrate onto which the superamphiphobic layer is brought. During gas exchange the nanostructured side of the membrane comes into contact with the liquid while at the same time gas is transported past the back side. The gas molecules drift in between the gaps of the highly porous network. High gas exchange is reached even with a low flow rate thereby lowering the risk of thrombosis when blood is fed with oxygen. The particular advantage: The membrane pores do not thereby clog. In tests, compared with Teflon blood did not leave any traces on the membrane even after several hours of contact – an elementary requirement for application in heart-lung machines.

With the gas exchange rates achieved from experiments encouraging industrial applications can be expected, including enrichment of CO2. With this membrane can not only enrichment but also filtration processes be carried out. For example, fine particles from the air were filtrated and fixated in limewash and water. CO2 could pass through the membrane in amine solutions, an established CO2 storage medium, which is an important step on the road to final deposition of CO2.

Universal liquid-repellent surfaces offer an exciting field of research. On the one hand, they enable a better understanding of fundamental function principles of surface coating, interaction of liquids with solids and flow characteristics of liquids. On the other hand, the phenomena superamphiphobicity is interesting, but still largely unexplored, for the application in industry and medicine or for climate protection.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2013 a total of 551 people were working at the MPI-P. The work force was made up of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists, and 195 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.nature.com/ncomms/2013/130925/ncomms3512/full/ncomms3512.html
- the Publication at Nature Communication
http://www.mpip-mainz.mpg.de/1959508/PM13-13en
- more information and pictures at the mpip homepage

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>