Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel membrane for climate protection and medicine technology

30.10.2013
Polymer scientists in Mainz develop a membrane for separating and enriching gas. Future application in heart-lung machines and in more efficient gas filters.

A research team from the Max Planck Institute for Polymer Research (MPI-P), under the director Hans-Jürgen Butt and his project leader Doris Vollmer, have developed a novel kind of membrane with which gases such as carbon dioxide (CO2) can be concentrated in vapour and liquids as required or separated from them.

This scientific breakthrough was announced in the scientific journal "Nature Communications". The membrane’s properties are based on a strong liquid-repellent (superamphiphobic) coating not only improving gas exchange but at the same time protecting its pores from clogging. The life-saving oxygenation of blood with heart-lung machines may take place far more reliably than until now. Hans-Jürgen Butt sees potential for further application in the medical and industrial field: “Gas exchange is definitely the largest field of application. The membrane could be used in the fields of climate protection as well as in the biomedical sectors”, explains the Max Planck director.

The basics for the superamphiphobic coating result from previous research work done by the surface physicists using candle soot whose combined structure of microscopic pellets has a far better self-cleaning effect than a lotus leaf. Soot is, however, not stable but can be used as a template for resistant coatings. The Mainz researchers coated the candle soot with silicon oxide and subsequently burnt away the soot. This remaining silicon oxide layer with an average thickness of just 20 nanometers was then coated with a semi-fluorinated silane in order to achieve the water- and oil-repellent effect.

Experiments show that the nanostructural design from the Mainz laboratories not only withstand water and oils but also blood, soap solutions and amines and can be produced with little effort. Until quite recently this property was hardly conceivable; in Mainz it was given the name „superamphiphobic“ as the logical deduction from the opposite of „amphiphilic“, which describes substances which like water as well as oil.

A fine mesh of stainless steel is used as a membrane substrate onto which the superamphiphobic layer is brought. During gas exchange the nanostructured side of the membrane comes into contact with the liquid while at the same time gas is transported past the back side. The gas molecules drift in between the gaps of the highly porous network. High gas exchange is reached even with a low flow rate thereby lowering the risk of thrombosis when blood is fed with oxygen. The particular advantage: The membrane pores do not thereby clog. In tests, compared with Teflon blood did not leave any traces on the membrane even after several hours of contact – an elementary requirement for application in heart-lung machines.

With the gas exchange rates achieved from experiments encouraging industrial applications can be expected, including enrichment of CO2. With this membrane can not only enrichment but also filtration processes be carried out. For example, fine particles from the air were filtrated and fixated in limewash and water. CO2 could pass through the membrane in amine solutions, an established CO2 storage medium, which is an important step on the road to final deposition of CO2.

Universal liquid-repellent surfaces offer an exciting field of research. On the one hand, they enable a better understanding of fundamental function principles of surface coating, interaction of liquids with solids and flow characteristics of liquids. On the other hand, the phenomena superamphiphobicity is interesting, but still largely unexplored, for the application in industry and medicine or for climate protection.

About the Max Planck Institute for Polymer Research

The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Fundamental research on both production and characterization of polymers as well as the physical and chemical properties analysis of polymers are conducted here by scientific collaborators from all over the world. In the beginning of 2013 a total of 551 people were working at the MPI-P. The work force was made up of 112 scientists, 173 doctoral and diploma students, 71 visiting scientists, and 195 technical, administrative and auxiliary staff.

Weitere Informationen:

http://www.nature.com/ncomms/2013/130925/ncomms3512/full/ncomms3512.html
- the Publication at Nature Communication
http://www.mpip-mainz.mpg.de/1959508/PM13-13en
- more information and pictures at the mpip homepage

Stephan Imhof | Max-Planck-Institut
Further information:
http://www.mpip-mainz.mpg.de

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>