Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First member of the wheat and barley group of grasses is sequenced

11.02.2010
A few grass species provide the bulk of our food supply and new grass crops are being domesticated for sustainable energy and feedstock production. However there are significant barriers limiting crop improvement, such as a lack of knowledge of gene function and their large and complex genomes.

Now, in the 11 February issue of Nature, an international consortium led by the John Innes Centre, the US Department of Energy Joint Genome Institute, the US Department of Agriculture and Oregon State University present an analysis of the complete genome sequence of the wild grass Brachypodium distachyon.

Three different groups of grasses, represented by maize, rice and wheat, provide most of the grains that support human nutrition and our domesticated animals. The genomes of two of these three groups have been sequenced. Brachypodium distachyon is the first member of the third group, which contains key food and fodder crops such as wheat, barley and forage grasses, to be sequenced.

Analysis of the compact Brachypodium genome has provided new insights into how grass genomes evolve and expand and it has demonstrated how Brachypodium can be used to navigate the closely related yet far larger and more complex genomes of wheat and barley.

"Our analysis of the Brachypodium genome is a key resource for securing sustainable supplies of food, feed and fuel from established crops such as wheat, barley and forage grasses and for the development of crops for bioenergy and renewable resource production", stated Michael Bevan from the John Innes Centre.

"It is already being widely used by crop scientists to identify genes in wheat and barley, and it is defining new approaches to large-scale genome analysis of these crops, because of the high degree of conserved gene structure and organisation we identified".

Brachypodium also has other important features, including a rapid life cycle and a very compact growth habit, making it ideal for laboratory studies. Philippe Vain is leading a programme at the John Innes Centre aimed at providing scientists with resources to identify gene functions. "Scientists can now use genetic resources we are developing in Brachypodium to determine the functions of genes involved in grass crop productivity. This has the potential to accelerate research in sustainable food production and in new sources of energy".
For more information about the international collaboration go to:
http://www.brachypodium.org, to access the genome sequence go to http://www.modelcrop.org, and to access functional genomics resources go to http://www.BrachyTAG.org.

Scientists at the John Innes Centre and their colleagues are working on projects aimed at enhancing food security and creating sustainable industries. The John Innes Centre, supported by the Biotechnology and Biological Sciences Research Council (BBSRC) and the John Innes Foundation, is committed to creating the resources and understanding needed for sustainable food and fuel production.

Andrew Chapple | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>