Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melatonin, a hormone segregated by human body, regulates sleep better than somniferous

09.11.2009
Scientists of the University of Granada state that the exogenous administration of melatonin corrects the sleep/wakefulness pace when human biological clock gets altered. At present, this substance is being widely used by the pharmaceutical industry to design synthetic medicines, a very interesting therapeutic tool for the treatment of sleep alterations.

Melatonin, a natural hormone segregated by the own human body, is an excellent sleep regulator expected to replace somniferous, which are much more aggressive, to correct the sleep/wakefulness pace when human biological clock becomes altered.

Those are the conclusions of a research work carried out by Darío Acuña-Castroviejo and Germaine Escames, professors of the Institute of Biotechnology (Biomedical Research Centre of the University of Granada), who have been carrying out a complete analysis of the properties of this natural hormone segregated by the pineal gland for years.

Melatonin (frequently called the ‘hormone of darkness’, because the organism produces it at night) is currently being used by the pharmaceutical industry to design derivative synthetic medicines, a very interesting therapeutic tool for the treatment of sleep alterations. Not in vain, the European Medicines Agency (EMEA) authorized in 2007 the use of melatonin for this type of therapies, after years of debate about the convenience of this measure.

Taking it at specific hours
The researchers of the University of Granada have stated that melatonin “is a very effective chronobiotic in the treatment of chronobiological alterations of the cycle sleep/wakefulness”, although its administration “must take place at certain hours of the day, inducing a phase advance or delay as convenient”. Therefore, the scientists point out that the “lack of effect of melatonin is related, most of the times, to an inadequate administration”.

The authors of this work, published in the Revista de Neurología (2009), state that endogenous melatonin (this is, that segregated by the human organism) “plays an important role in the circadian regulation of sleep”, whereas exogenous melatonin (administered as a medicine) “has an influence on sleep aspects such as latency and quality”.

Actually, the ability of melatonin to readapt the biological clock has been studied in blind individuals, as they cannot make use of the information of the photoperiod to activate the endogenous pacemaker segregated by melatonin at night. The scientists have pointed out that the administration of melatonin every 24 hours (1-10 mg/a day) re-establishes the pace in these persons, including the sleep/wakefulness, synchronizing them to a period of 24 hours.

The use of melatonin to regulate sleep is not the only work carried out at the Institute of Biotechnology of the UGR. In the last years, professors Acuña and Escames have proved that this substance is also useful to slow down cell ageing, to treat diseases such as Parkinson and to slow down cell death caused by serious infectious processes that affect the entire organism technically known as sepsis. Exactly, they are working at present on a clinical test in Phase II to assess the therapeutic of melatonin in the septic shock on patients, funded by the Health Institute Carlos III.

Reference: Professors Darío Acuña Castroviejo and Germaine Escames
Institute of Biotechnology, Biomedical Research Centre of the University of Granada.
Phone number. 958 241000 ext. 20169
E-mail. dacuna@ugr.es; gescames@ugr.es

Darío Acuña Castroviejo | EurekAlert!
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>