Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melatonin, a hormone segregated by human body, regulates sleep better than somniferous

09.11.2009
Scientists of the University of Granada state that the exogenous administration of melatonin corrects the sleep/wakefulness pace when human biological clock gets altered. At present, this substance is being widely used by the pharmaceutical industry to design synthetic medicines, a very interesting therapeutic tool for the treatment of sleep alterations.

Melatonin, a natural hormone segregated by the own human body, is an excellent sleep regulator expected to replace somniferous, which are much more aggressive, to correct the sleep/wakefulness pace when human biological clock becomes altered.

Those are the conclusions of a research work carried out by Darío Acuña-Castroviejo and Germaine Escames, professors of the Institute of Biotechnology (Biomedical Research Centre of the University of Granada), who have been carrying out a complete analysis of the properties of this natural hormone segregated by the pineal gland for years.

Melatonin (frequently called the ‘hormone of darkness’, because the organism produces it at night) is currently being used by the pharmaceutical industry to design derivative synthetic medicines, a very interesting therapeutic tool for the treatment of sleep alterations. Not in vain, the European Medicines Agency (EMEA) authorized in 2007 the use of melatonin for this type of therapies, after years of debate about the convenience of this measure.

Taking it at specific hours
The researchers of the University of Granada have stated that melatonin “is a very effective chronobiotic in the treatment of chronobiological alterations of the cycle sleep/wakefulness”, although its administration “must take place at certain hours of the day, inducing a phase advance or delay as convenient”. Therefore, the scientists point out that the “lack of effect of melatonin is related, most of the times, to an inadequate administration”.

The authors of this work, published in the Revista de Neurología (2009), state that endogenous melatonin (this is, that segregated by the human organism) “plays an important role in the circadian regulation of sleep”, whereas exogenous melatonin (administered as a medicine) “has an influence on sleep aspects such as latency and quality”.

Actually, the ability of melatonin to readapt the biological clock has been studied in blind individuals, as they cannot make use of the information of the photoperiod to activate the endogenous pacemaker segregated by melatonin at night. The scientists have pointed out that the administration of melatonin every 24 hours (1-10 mg/a day) re-establishes the pace in these persons, including the sleep/wakefulness, synchronizing them to a period of 24 hours.

The use of melatonin to regulate sleep is not the only work carried out at the Institute of Biotechnology of the UGR. In the last years, professors Acuña and Escames have proved that this substance is also useful to slow down cell ageing, to treat diseases such as Parkinson and to slow down cell death caused by serious infectious processes that affect the entire organism technically known as sepsis. Exactly, they are working at present on a clinical test in Phase II to assess the therapeutic of melatonin in the septic shock on patients, funded by the Health Institute Carlos III.

Reference: Professors Darío Acuña Castroviejo and Germaine Escames
Institute of Biotechnology, Biomedical Research Centre of the University of Granada.
Phone number. 958 241000 ext. 20169
E-mail. dacuna@ugr.es; gescames@ugr.es

Darío Acuña Castroviejo | EurekAlert!
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>