Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma stem cells' evasive talents

13.01.2010
Research reveals how these cancers shield themselves from immune attack

Melanoma, if not detected in its early stages, transforms into a highly deadly, treatment-resistant cancer. Although the immune system initially responds to melanoma and mounts anti-tumor attacks, these assaults are generally ineffective, allowing more advanced melanomas to win the battle and spread beyond the primary site.

Now, researchers at Children's Hospital Boston and Brigham and Women's Hospital (BWH) shed light on how melanomas stimulate, yet ultimately evade, a patient's immune system. Their work, published online January 12 by the journal Cancer Research, also suggests ways drugs might block these tactics.

In 2008, the same team, led by Markus Frank, MD, of the Transplantation Research Center of Children's and BWH, and George Murphy, MD, chief of Dermatopathology at BWH, showed in the journal Nature that a key reason for melanoma virulence is a small group of tumor stem cells that are able to grow despite chemotherapy drugs, allowing the tumor to re-grow and progress. They also showed that targeting these cells (identifiable by a molecule on their surface known as ABCB5) could successfully inhibit tumor growth in mice. (The ABCB5 technology has been licensed and is currently in clinical drug development.)

In their new paper, first author Tobias Schatton, PhD, of the Transplantation Research Center, and colleagues show that these ABCB5-positive cells also produce molecules that inhibit the body's natural immune attack, known as PD-1 and B7.2. These molecules work, they found, by triggering white blood cells known as regulatory T cells (T-regs), to dampen the normal anti-melanoma response. The T-regs are thus tricked into protecting the deadly melanoma stem cells from the body's own defenses.

"To my knowledge, this study provides the first evidence that cancer stem cells escape and down-regulate host antitumor immunity," says Frank, the study's senior investigator, also affiliated with the Department of Dermatology at BWH. "This might have important implications for cancer therapy, especially in malignant melanoma."

Additional experiments showed that melanoma stem cells stimulate surrounding cells' production of IL-10, a signaling molecule that suppresses the immune system, and inhibit production of IL-2, which stimulates immune attack. The melanoma stem cells also produce fewer of the antigens that trigger immune responses, further evading immune attack.

The study adds to a growing body of evidence that melanoma stem cells have developed a repertoire of complementary strategies to outsmart host defenses, camouflaging them from the very immune cells and therapeutic agents that seek to destroy them. It also suggests new strategies for attacking the deadly skin cancer.

"Melanoma stem cell targeting holds promise for an absolute cure, because you're hitting the cells that really matter - the cells that drive tumor progression," says Murphy. "By understanding the precise molecular pathways whereby melanoma stem cells cajole the immune system into a permissive role, scientists are now closer to identifying ways of blocking or inhibiting such tactics."

For example, inhibition of PD-1 and B7.2 on melanoma stem cells could render them vulnerable not only to immune defenses, but also to treatments that are currently only effective against the more susceptible non-stem cell component of the tumor. Stripping away the stem cells' "protective shield" may allow a tumor to be killed without the possibility of it re-growing.

Melanomas are highly immunogenic cancers, initially provoking anti-tumor attacks, as evidenced by patients whose brown-black skin tumors seem to have partly dissolved away, producing regions of pink to white coloration where pigment previously existed. But ultimately, melanomas evade the immune system; until now, how the key cells that drive the melanomas' growth accomplish this has been a mystery.

The current work is relevant primarily to metastatic melanoma, which is often incurable, says Murphy. In their early, flat stages, melanomas can be cured surgically, but are potentially deadly once they grow as a skin elevation (sometimes no larger than a small pea) and spread to lymph nodes or vital organs. Scientists have long sought to find ways to target and destroy melanoma deposits that have already spread.

The research team is now planning to examine the ability of currently approved or investigational immunotherapeutic strategies to target and inhibit the immune-evasion tactics and immunological tolerance induced by melanoma stem cells. Specifically, they hope to participate in several ongoing or future clinical trials that target specific immunologic signaling pathways in melanoma patients (using anti-PD-1 antibodies, for example), to track the response of ABCB5-positive melanoma stem cells.

The study, titled "Modulation of T-Cell Activation by Malignant Melanoma Initiating Cells," was funded by the National Cancer Institute. Coauthors were: Ute Schutte, Andre Hoerning and Susanne Robles, of the Transplantation Research Center, Children's Hospital Boston and BWH; Natasha Frank, of BWH and the VA Boston Healthcare System; Qian Zhan of BWH; Jun Zhou and F. Stephen Hodi of the Dana-Farber Cancer Institute; and Giulio Spagnoli of University Hospital Basel, Basel, Switzerland.

Contact:
Keri Stedman
Children's Hospital Boston
617-919-3110
keri.stedman@childrens.harvard.edu
Kevin Myron
Brigham and Women's Hospital
617-534-1605
kmyron@partners.org
Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 13 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Brigham and Women's Hospital (BWH) is a 777-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. In July of 2008, the hospital opened the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $485 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information about BWH, please visit www.brighamandwomens.org.

Keri Stedman | EurekAlert!
Further information:
http://www.childrenshospital.org/newsroom

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>