Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma uses body's immune system to spread to lungs

08.10.2010
The way melanoma cells use the immune system to spread and develop into lung tumors may lead to a therapy to decrease development of these tumors, according to Penn State researchers.

"Melanoma is the most aggressive and metastatic form of skin cancer," said Gavin Robertson, professor of pharmacology, pathology, dermatology and surgery in the Penn State College of Medicine. "Therefore, identifying proteins and molecular mechanisms that regulate metastasis is important for developing drugs to treat this disease."

Metastasis is a complex process in which cancer cells detach from the primary tumor and migrate to other sites in the body by traveling through the lymphatic or blood circulatory systems. Researchers in the Foreman Foundation Melanoma Research Laboratory at Penn State developed a model to determine why the roughly one million tumor cells shed daily from a 1-gram melanoma tumor do not form more metastases in the lungs.

After intravenously injecting 1 million human melanoma cells in a mouse, Robertson and colleagues observed entrapment of many of these cells in the lung vessels. Within 24 hours, however, few cells were still present in the lungs.

"In this study, we show that entrapped, circulating melanoma cells can use a person's own immune cells -- specifically a type of white blood cell called neutrophils -- to control lung metastasis development," Robertson said. After injecting the mice with neutrophils an hour following the melanoma cell injection, cancer cell retention was increased in the lung by about three times.

Melanoma cells produce and secrete high levels of a protein called IL-8, which is used to attract neutrophils.

"For patients, this is important because a therapy preventing circulating melanoma cells from secreting IL-8 would have the potential to decrease lung metastasis development by about 50 percent by disrupting interaction of the cancer cells with neutrophils," Robertson said. "Metastases form by proteins on the melanoma and neutrophils interacting and forming physical connections. These connections promote anchoring of the melanoma cells to the lung vessel walls, enabling the cancer cells to migrate through the wall to form lung metastases."

Decreasing the secretion of IL-8 limits the interaction of melanoma cells with neutrophils, dropping the number of melanoma cells retained in the lungs by about half.

Findings were published in the journal Cancer Research. Funding for the study was provided by the National Institutes of Health and the Foreman Foundation for Melanoma Research.

Other authors on the report are Penn State graduate students Sung Jin Huh of the Department of Pharmacology and Shile Liang of the Department of Bioengineering, assistant professor Arati Sharma of the Department of Pharmacology, and professor Cheng Dong, who all are members of the Melanoma Therapeutics Program at Penn State.

Matt Solovey | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>