Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet the Beetles: Social Networks Provide Clues to Natural Selection

31.01.2012
Think of them as a group of guys, hanging out together, but not spending much time with the ladies, nor getting much "action." Except these "guys" are forked fungus beetles.
Forked what? Yes, forked fungus beetles. Like other insects and animals, they have their own societies. Most are highly social, but some hang out in small guy groups.

It turns out, maybe not surprisingly, that the cliquish ones – the small groups of male beetles that live on the fringes of society with their buddies – are less likely to meet up with females, copulate and pass on their genes to offspring.

Why does it matter? Because social interactions likely are the products of evolution by natural selection – Charles Darwin's description for nature's process whereby characteristics that help individuals to survive and propagate are spread through the population.

And so forked fungus beetles and their activities are of immense interest to Vince Formica and Butch Brodie, evolutionary biologists in the University of Virginia's College of Arts & Sciences. They study the beetles in a remote forest near U.Va.'s Mountain Lake Biological Station in southwest Virginia.

"Forked fungus beetles are not pretty – they look like tree bark – but they're helping us better understand the evolution of social behavior," Formica said. He is the lead author on a paper about the study published in the January edition of the Journal of Evolutionary Biology.

Formica and his team wanted to know if an individual beetle's place in society is related to its reproductive success.

"In the world of evolutionary biology, we are interested in how natural selection can shape traits or characteristics of organisms," he said. "Studying social networks are a way of analyzing the structure of animal societies. In this case, we were asking if an individual's position in a social network is a trait or characteristic of an individual that can experience natural selection. Apparently it is."

Formica said there are essentially two parts to evolution by natural selection: The first is a trait related to the number of offspring produced, and the second is the ability to pass that trait on to offspring, what scientists call heritability.

"We've shown that the trait of sociability is under natural selection, but we don't know yet if it's heritable," he said. "This is one of only a few studies that has shown that position in a social network is a trait that can experience natural selection and therefore has the potential to evolve. It's clear in this study that being central in a large social network is key to high reproductive success. If a trait – such as an individual's position in a network – is related to reproductive success, you can say it is experiencing natural selection and has the potential to evolve."

Formica chose forked fungus beetles as his study models partly because they are easy to capture, tag and observe.

"We can sit and watch their whole universe," he said.

But the beetles are nocturnal, so researchers spend long nights in the forests watching them.

"We drink a lot of espresso," he said.

The biologists tag the beetles with extreme-miniature ID numbers that glow when scanned under ultraviolet lights. The researchers then are able to watch their social activities – everything from fighting to eating to mating, to just sitting there like bark on logs.

Formica's team, made up mostly of undergraduate students, observed that some of the beetles are very social and have a large network of friends. These active beetles also have a lot of sex. But the male beetles that have small social networks – just a few male friends – tend to spend little time with females and copulate rarely.

"Do individual behaviors cause their position to evolve, and does it cause the society to evolve as well? That's what we're attempting to answer," he said.

While Formica is hesitant to draw direct connections from his findings to the romantic lives of humans, he does believe that uncovering how social networks operate, even in a tiny bark-shaped beetle, is vital if we want to understand how all societies evolve.

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>