Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet the Beetles: Social Networks Provide Clues to Natural Selection

31.01.2012
Think of them as a group of guys, hanging out together, but not spending much time with the ladies, nor getting much "action." Except these "guys" are forked fungus beetles.
Forked what? Yes, forked fungus beetles. Like other insects and animals, they have their own societies. Most are highly social, but some hang out in small guy groups.

It turns out, maybe not surprisingly, that the cliquish ones – the small groups of male beetles that live on the fringes of society with their buddies – are less likely to meet up with females, copulate and pass on their genes to offspring.

Why does it matter? Because social interactions likely are the products of evolution by natural selection – Charles Darwin's description for nature's process whereby characteristics that help individuals to survive and propagate are spread through the population.

And so forked fungus beetles and their activities are of immense interest to Vince Formica and Butch Brodie, evolutionary biologists in the University of Virginia's College of Arts & Sciences. They study the beetles in a remote forest near U.Va.'s Mountain Lake Biological Station in southwest Virginia.

"Forked fungus beetles are not pretty – they look like tree bark – but they're helping us better understand the evolution of social behavior," Formica said. He is the lead author on a paper about the study published in the January edition of the Journal of Evolutionary Biology.

Formica and his team wanted to know if an individual beetle's place in society is related to its reproductive success.

"In the world of evolutionary biology, we are interested in how natural selection can shape traits or characteristics of organisms," he said. "Studying social networks are a way of analyzing the structure of animal societies. In this case, we were asking if an individual's position in a social network is a trait or characteristic of an individual that can experience natural selection. Apparently it is."

Formica said there are essentially two parts to evolution by natural selection: The first is a trait related to the number of offspring produced, and the second is the ability to pass that trait on to offspring, what scientists call heritability.

"We've shown that the trait of sociability is under natural selection, but we don't know yet if it's heritable," he said. "This is one of only a few studies that has shown that position in a social network is a trait that can experience natural selection and therefore has the potential to evolve. It's clear in this study that being central in a large social network is key to high reproductive success. If a trait – such as an individual's position in a network – is related to reproductive success, you can say it is experiencing natural selection and has the potential to evolve."

Formica chose forked fungus beetles as his study models partly because they are easy to capture, tag and observe.

"We can sit and watch their whole universe," he said.

But the beetles are nocturnal, so researchers spend long nights in the forests watching them.

"We drink a lot of espresso," he said.

The biologists tag the beetles with extreme-miniature ID numbers that glow when scanned under ultraviolet lights. The researchers then are able to watch their social activities – everything from fighting to eating to mating, to just sitting there like bark on logs.

Formica's team, made up mostly of undergraduate students, observed that some of the beetles are very social and have a large network of friends. These active beetles also have a lot of sex. But the male beetles that have small social networks – just a few male friends – tend to spend little time with females and copulate rarely.

"Do individual behaviors cause their position to evolve, and does it cause the society to evolve as well? That's what we're attempting to answer," he said.

While Formica is hesitant to draw direct connections from his findings to the romantic lives of humans, he does believe that uncovering how social networks operate, even in a tiny bark-shaped beetle, is vital if we want to understand how all societies evolve.

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>