Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meet the Beetles: Social Networks Provide Clues to Natural Selection

31.01.2012
Think of them as a group of guys, hanging out together, but not spending much time with the ladies, nor getting much "action." Except these "guys" are forked fungus beetles.
Forked what? Yes, forked fungus beetles. Like other insects and animals, they have their own societies. Most are highly social, but some hang out in small guy groups.

It turns out, maybe not surprisingly, that the cliquish ones – the small groups of male beetles that live on the fringes of society with their buddies – are less likely to meet up with females, copulate and pass on their genes to offspring.

Why does it matter? Because social interactions likely are the products of evolution by natural selection – Charles Darwin's description for nature's process whereby characteristics that help individuals to survive and propagate are spread through the population.

And so forked fungus beetles and their activities are of immense interest to Vince Formica and Butch Brodie, evolutionary biologists in the University of Virginia's College of Arts & Sciences. They study the beetles in a remote forest near U.Va.'s Mountain Lake Biological Station in southwest Virginia.

"Forked fungus beetles are not pretty – they look like tree bark – but they're helping us better understand the evolution of social behavior," Formica said. He is the lead author on a paper about the study published in the January edition of the Journal of Evolutionary Biology.

Formica and his team wanted to know if an individual beetle's place in society is related to its reproductive success.

"In the world of evolutionary biology, we are interested in how natural selection can shape traits or characteristics of organisms," he said. "Studying social networks are a way of analyzing the structure of animal societies. In this case, we were asking if an individual's position in a social network is a trait or characteristic of an individual that can experience natural selection. Apparently it is."

Formica said there are essentially two parts to evolution by natural selection: The first is a trait related to the number of offspring produced, and the second is the ability to pass that trait on to offspring, what scientists call heritability.

"We've shown that the trait of sociability is under natural selection, but we don't know yet if it's heritable," he said. "This is one of only a few studies that has shown that position in a social network is a trait that can experience natural selection and therefore has the potential to evolve. It's clear in this study that being central in a large social network is key to high reproductive success. If a trait – such as an individual's position in a network – is related to reproductive success, you can say it is experiencing natural selection and has the potential to evolve."

Formica chose forked fungus beetles as his study models partly because they are easy to capture, tag and observe.

"We can sit and watch their whole universe," he said.

But the beetles are nocturnal, so researchers spend long nights in the forests watching them.

"We drink a lot of espresso," he said.

The biologists tag the beetles with extreme-miniature ID numbers that glow when scanned under ultraviolet lights. The researchers then are able to watch their social activities – everything from fighting to eating to mating, to just sitting there like bark on logs.

Formica's team, made up mostly of undergraduate students, observed that some of the beetles are very social and have a large network of friends. These active beetles also have a lot of sex. But the male beetles that have small social networks – just a few male friends – tend to spend little time with females and copulate rarely.

"Do individual behaviors cause their position to evolve, and does it cause the society to evolve as well? That's what we're attempting to answer," he said.

While Formica is hesitant to draw direct connections from his findings to the romantic lives of humans, he does believe that uncovering how social networks operate, even in a tiny bark-shaped beetle, is vital if we want to understand how all societies evolve.

Fariss Samarrai | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>