Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mediterranean earthworm species found thriving in Ireland as global temperatures rise

26.07.2012
Scientists have discovered a thriving population of Mediterranean earthworms in an urban farm in Dublin, Ireland.

The findings by University College Dublin scientists published in the journal Biology Letters on 25 July 2012 suggest that rising soil temperatures due to climate change may be extending the geographical habitat range of the earthworm Prosellodrilus amplisetosus.


This is a P. amplisetosus in soil in the urban farm Dublin, Ireland.
Credit: Carol Melody, UCD

"Soil decomposer species including earthworms are frequently introduced into non-native soils by human activities like the transportation of nursery plants or live fish bait," says Dr Olaf Schmidt from the School of Agriculture and Food Science, and the Earth Institute, University College Dublin, one of the authors of the report.

"There have been a few recordings of the earthworm P. amplisetosus outside of its native range in the Aquitaine region of south-western France, but now we have discovered a successfully thriving population in Ireland, about 1,000 km north of its native habitat."

Urban farms have higher temperatures than rural farms so the scientists suggest that this may have helped P. amplisetosus to become established in this new location. The mean yearly air temperature in Aquitaine in south-western France is about 3 degrees higher than in Dublin, Ireland.

The finding brings to 27 the total number of known earthworm species living in Irish soils.

According to the scientists, the Mediterranean species of earthworm P. amplisetosus is not an invasive species in Ireland. It does not directly compete for resources with the other resident species.

"By comparing the chemical composition of the worms, we discovered that the newcomers feed on a portion of the soil that the other resident earthworms do not use," says Carol Melody, a PhD student at the School of Agriculture and Food Science, University College Dublin, who co-authored the research paper.

"P. amplisetosus is a soil decomposer that eats organic carbon in portions of the soil to which the resident worm species don't have access," she says.

"If other soil decomposers like P. amplisetosus start to expand their habitat ranges we could see increasing amounts of CO2 being released from the soil where previously this carbon had been locked up because it was inaccessible to native earthworm species," says Dr Schmidt.

A sample of the P. amplisetosus found thriving in Dublin, Ireland, has been deposited in the Natural History Museum in London to archive the scientific discovery and to make scientists in Britain aware of the southern vagrants.

Dominic Martella | EurekAlert!
Further information:
http://www.ucd.ie

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>