Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medicines from the Sea

24.03.2009
For the first time, Norwegian scientists have managed to produce completely new antibiotics from bacteria found in the sea. The eleven species of bacteria that create substances that kill cancerous cells and three other bacteria that produce new antibiotics were discovered by scientists at Norwegian University of Science and Technology (NTNU) and SINTEF. In collaboration with research groups in Moscow and the University of Bergen, they have made breakthroughs in the field of biotechnology.

Never before have Norwegian scientists carried out the entire process from gathering bacteria from the fjords to presenting completely new interesting substances in bottles. Behind their success lies a long and painstaking process of screening, cultivation, isolation and testing.

However, it will still take some time before they can be sure that the process will continue to the phases of commercialisation and medicine production. The NTNU and SINTEF researchers have been bioprospecting for five or six years, searching for interesting substances that are produced by marine bacteria. The wide range of expertise of this research group makes it unique, as it brings together competence in physiology and genetics, and has access to modern screening and fermentation laboratories.

The pace of the process has risen during the past few months, since the recruitment of Professor Stein Ove Døskeland’s group at the University of Bergen, one of the best groups around in this field. The scientists have also had bacterial fractions tested in Russia.

Many of the bacteria that have been brought up from the Trondheim Fjord have antibiotic functions, but most of these are already known, and are therefore of no interest. New compounds that can be patented are most interesting. “Substances with a new chemical structure and, we hope, with a different mechanism of action than we already know of, could be extremely valuable, for example in fighting cancer. This is why we need more candidate structures. Not all of them can be developed into new medicines, but if we are successful with one or two of them, we will be quite happy,” says NTNU professor Sergey Zotchev.

Recent focus on a few selected bacteria has led to these exciting findings. In Bergen and Moscow, the 11 anti-cancer substances have been tested against leukemias and stomach, colon and prostate cancers. “We have found that cancerous cells have been killed, while normal cells survive, and that individual extracts act on different types of cancer cells,” says senior scientist Håvard Sletta of SINTEF. “However, we still have not identified the active substances in the compounds produced by the bacteria”.

Meticulous laboratory experiments have enable the scientists to identify the chemical structure of one of the three substances that can be used as antibiotics, and which they now know act against multiresistant bacteria. Towards the end of March, this substance is due to be tested on animals in Moscow. If the results turn out to be positive, the way will be clear for a patent application.

| SINTEF News
Further information:
http://www.sintef.no/Home/Press-Room/Research-News/Medicines-from-the-Sea2/
http://www.kooperation-international.de

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>