Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism that permits selective capture of microRNAs in nanovesicles that shuttle between cells

20.12.2013
The study presents the first description of a set of related nuceleotide sequences essential for the role of these small molecules in intercellular communication

The role of microRNAs (miRNAs) is fundamental for the correct moment-to-moment adjustment in the expression of target genes. "Before this study, we already knew that these small molecules could be packaged into small vesicles and exported to the extracellular space, to be later captured by other cells and in this way play an important role in intercellular communication," explains CNIC researcher Carolina Villarroya, the first author on the study.

What was not known until now was the mechanism by which miRNAs are encapsulated and exported. And this is precisely what graduate researcher Villarroya and Dr. María Mittelbrunn—from Prof. Sánchez Madrid's group—have discovered, working closely with Dr. Fátima Sánchez Cabo of the Bioinformatics Unit and Dr. Jesús Vázquez of the Proteomics Unit.

The article describes how a specific group of miRNAs that are actively exported in nanovesicles from human T lymphocytes share specific nucleotide sequence patterns called EXOmotifs. When these EXOmotifs are mutated, export of these miRNAs is impeded; and when they are introduced into other miRNAs, export is facilitated. EXOmotifs provide the binding site for a protein called hnRNPA2B1, which is responsible for transporting miRNAs to the interior of nanovesicles.

hnRNPA2B1 is also implicated in the transport of the genomic RNA of viruses such as HIV to sites of exit to the cell exterior. This establishes a parallel between the secretion of vesicles loaded with RNA and the production of viruses that parasitize the cellular machinery to extend infection.

The discovery suggests a new route for packaging RNA molecules of interest into nanovesicles, which have enormous potential as vehicles for gene therapy, vaccines and antitumor treatments. These findings form the basis of a new patent by the researchers and their institutions the CNIC and the UAM.

Ainhoa Iriberri | EurekAlert!
Further information:
http://www.cnic.es

Further reports about: CNIC EXOmotifs RNA RNA molecule T lymphocyte

More articles from Life Sciences:

nachricht How Cells Take Out the Trash
23.04.2014 | NIH, National Institute of General Medical Sciences (NIGMS)

nachricht Ravens understand the relations among others
23.04.2014 | University of Vienna

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Siemens at the 2014 UIC ERTMS World Conference in Istanbul

01.04.2014 | Event News

AERA Meeting: German and US-American educational researchers in dialogue

28.03.2014 | Event News

WHS Regional Meeting: International experts address health challenges in Latin America

24.03.2014 | Event News

 
Latest News

Building Stronger Bridges

23.04.2014 | Architecture and Construction

How Cells Take Out the Trash

23.04.2014 | Life Sciences

The Surface Area of the Digestive Tract "only" as Large as a Studio Apartment

23.04.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>