Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism fundamental to the spread of invasive yeast infections identified

18.06.2009
A group of researchers led by Carnegie Mellon University Biological Sciences Professor Aaron Mitchell has identified a novel regulatory gene network that plays an important role in the spread of common, and sometimes deadly, yeast infections. The findings, which establish the role of Zap1 protein in the activation of genes that regulate the synthesis of biofilm matrix, will be published in the June 16, 2009, issue of PLoS Biology, a peer-reviewed open-access journal from the Public Library of Science.

Candida albicans is a fungus, more specifically a yeast, which approximately 80 percent of people have in their gastrointestinal and genitourinary tract with no ill effects. However, at elevated levels it can cause non-life threatening conditions like thrush and yeast infections.

A C. albicans infection becomes much more serious, and can be lethal, in those with compromised immune systems who have an implantable medical device, such as a pacemaker or artificial joint, or who use broad-spectrum antibiotics. Approximately 60,000 Americans develop such invasive C. albicans infections each year.

Central to such infections is a substance called biofilm matrix. A biofilm is a population of microbes, in this case C. albicans cells, joined together to form a sheet of cells. The cells in the biofilm produce extracellular components such as proteins and sugars, which form a cement-like substance called matrix. This matrix serves to protect the cells of the biofilm, preventing drugs and other stressors from attacking the cells while acting as a glue that holds the cells together. By doing this, the matrix provides an environment in which yeast cells in the biofilm can thrive, promoting infection and drug resistance.

"Biofilms have a major impact on human health and matrix is such a pivotal component of biofilms. It is important to understand how the production of matrix is regulated," Mitchell said.

In the study published in PLoS, Mitchell and colleagues found that the zinc-responsive regulatory protein Zap1 prevents the production of soluble â-1,3 glucan, a sugar that is a major component of matrix. They also identified other genes whose expression is controlled by Zap1, called Zap1 target genes. They found that these genes encode for two types of enzymes, glucoamylases and alcohol dehydrogenases, which both govern the production and maturation of matrix components.

"Understanding this novel regulatory gene network gives us insight into the metabolic processes that contribute to biofilm formation, and the role the network plays in infection," Mitchell said. "By better understanding the mechanisms by which biofilms develop and grow, we can start to look at targets for combating infection."

According to Mitchell, the next steps will be to determine the mechanisms by which Zap1 target genes regulate matrix production. Understanding and targeting these mechanisms will allow the researchers to develop therapeutic small molecules that will block biofilm formation and diagnostic tools that can detect biofilms before infections spread.

This study was funded by the National Institutes of Health.

Other study authors include: Clarissa J. Nobile, Aaron Hernday, Oliver R. Homann, and Alexander D. Johnson, Department of Microbiology and Immunology, University of California, San Francisco; Jeniel E. Nett and David R. Andes, Department of Medicine, University of Wisconsin; and Jean-Sebastien Deneault, and Andre Nantel, Biotechnology Research Institute, National Research Council of Canada.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion comprehensive campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.cmu.edu/about/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>