Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism fundamental to the spread of invasive yeast infections identified

18.06.2009
A group of researchers led by Carnegie Mellon University Biological Sciences Professor Aaron Mitchell has identified a novel regulatory gene network that plays an important role in the spread of common, and sometimes deadly, yeast infections. The findings, which establish the role of Zap1 protein in the activation of genes that regulate the synthesis of biofilm matrix, will be published in the June 16, 2009, issue of PLoS Biology, a peer-reviewed open-access journal from the Public Library of Science.

Candida albicans is a fungus, more specifically a yeast, which approximately 80 percent of people have in their gastrointestinal and genitourinary tract with no ill effects. However, at elevated levels it can cause non-life threatening conditions like thrush and yeast infections.

A C. albicans infection becomes much more serious, and can be lethal, in those with compromised immune systems who have an implantable medical device, such as a pacemaker or artificial joint, or who use broad-spectrum antibiotics. Approximately 60,000 Americans develop such invasive C. albicans infections each year.

Central to such infections is a substance called biofilm matrix. A biofilm is a population of microbes, in this case C. albicans cells, joined together to form a sheet of cells. The cells in the biofilm produce extracellular components such as proteins and sugars, which form a cement-like substance called matrix. This matrix serves to protect the cells of the biofilm, preventing drugs and other stressors from attacking the cells while acting as a glue that holds the cells together. By doing this, the matrix provides an environment in which yeast cells in the biofilm can thrive, promoting infection and drug resistance.

"Biofilms have a major impact on human health and matrix is such a pivotal component of biofilms. It is important to understand how the production of matrix is regulated," Mitchell said.

In the study published in PLoS, Mitchell and colleagues found that the zinc-responsive regulatory protein Zap1 prevents the production of soluble â-1,3 glucan, a sugar that is a major component of matrix. They also identified other genes whose expression is controlled by Zap1, called Zap1 target genes. They found that these genes encode for two types of enzymes, glucoamylases and alcohol dehydrogenases, which both govern the production and maturation of matrix components.

"Understanding this novel regulatory gene network gives us insight into the metabolic processes that contribute to biofilm formation, and the role the network plays in infection," Mitchell said. "By better understanding the mechanisms by which biofilms develop and grow, we can start to look at targets for combating infection."

According to Mitchell, the next steps will be to determine the mechanisms by which Zap1 target genes regulate matrix production. Understanding and targeting these mechanisms will allow the researchers to develop therapeutic small molecules that will block biofilm formation and diagnostic tools that can detect biofilms before infections spread.

This study was funded by the National Institutes of Health.

Other study authors include: Clarissa J. Nobile, Aaron Hernday, Oliver R. Homann, and Alexander D. Johnson, Department of Microbiology and Immunology, University of California, San Francisco; Jeniel E. Nett and David R. Andes, Department of Medicine, University of Wisconsin; and Jean-Sebastien Deneault, and Andre Nantel, Biotechnology Research Institute, National Research Council of Canada.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion comprehensive campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.cmu.edu/about/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>