Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism fundamental to the spread of invasive yeast infections identified

18.06.2009
A group of researchers led by Carnegie Mellon University Biological Sciences Professor Aaron Mitchell has identified a novel regulatory gene network that plays an important role in the spread of common, and sometimes deadly, yeast infections. The findings, which establish the role of Zap1 protein in the activation of genes that regulate the synthesis of biofilm matrix, will be published in the June 16, 2009, issue of PLoS Biology, a peer-reviewed open-access journal from the Public Library of Science.

Candida albicans is a fungus, more specifically a yeast, which approximately 80 percent of people have in their gastrointestinal and genitourinary tract with no ill effects. However, at elevated levels it can cause non-life threatening conditions like thrush and yeast infections.

A C. albicans infection becomes much more serious, and can be lethal, in those with compromised immune systems who have an implantable medical device, such as a pacemaker or artificial joint, or who use broad-spectrum antibiotics. Approximately 60,000 Americans develop such invasive C. albicans infections each year.

Central to such infections is a substance called biofilm matrix. A biofilm is a population of microbes, in this case C. albicans cells, joined together to form a sheet of cells. The cells in the biofilm produce extracellular components such as proteins and sugars, which form a cement-like substance called matrix. This matrix serves to protect the cells of the biofilm, preventing drugs and other stressors from attacking the cells while acting as a glue that holds the cells together. By doing this, the matrix provides an environment in which yeast cells in the biofilm can thrive, promoting infection and drug resistance.

"Biofilms have a major impact on human health and matrix is such a pivotal component of biofilms. It is important to understand how the production of matrix is regulated," Mitchell said.

In the study published in PLoS, Mitchell and colleagues found that the zinc-responsive regulatory protein Zap1 prevents the production of soluble â-1,3 glucan, a sugar that is a major component of matrix. They also identified other genes whose expression is controlled by Zap1, called Zap1 target genes. They found that these genes encode for two types of enzymes, glucoamylases and alcohol dehydrogenases, which both govern the production and maturation of matrix components.

"Understanding this novel regulatory gene network gives us insight into the metabolic processes that contribute to biofilm formation, and the role the network plays in infection," Mitchell said. "By better understanding the mechanisms by which biofilms develop and grow, we can start to look at targets for combating infection."

According to Mitchell, the next steps will be to determine the mechanisms by which Zap1 target genes regulate matrix production. Understanding and targeting these mechanisms will allow the researchers to develop therapeutic small molecules that will block biofilm formation and diagnostic tools that can detect biofilms before infections spread.

This study was funded by the National Institutes of Health.

Other study authors include: Clarissa J. Nobile, Aaron Hernday, Oliver R. Homann, and Alexander D. Johnson, Department of Microbiology and Immunology, University of California, San Francisco; Jeniel E. Nett and David R. Andes, Department of Medicine, University of Wisconsin; and Jean-Sebastien Deneault, and Andre Nantel, Biotechnology Research Institute, National Research Council of Canada.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion comprehensive campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.cmu.edu/about/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>