Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mechanism fundamental to the spread of invasive yeast infections identified

18.06.2009
A group of researchers led by Carnegie Mellon University Biological Sciences Professor Aaron Mitchell has identified a novel regulatory gene network that plays an important role in the spread of common, and sometimes deadly, yeast infections. The findings, which establish the role of Zap1 protein in the activation of genes that regulate the synthesis of biofilm matrix, will be published in the June 16, 2009, issue of PLoS Biology, a peer-reviewed open-access journal from the Public Library of Science.

Candida albicans is a fungus, more specifically a yeast, which approximately 80 percent of people have in their gastrointestinal and genitourinary tract with no ill effects. However, at elevated levels it can cause non-life threatening conditions like thrush and yeast infections.

A C. albicans infection becomes much more serious, and can be lethal, in those with compromised immune systems who have an implantable medical device, such as a pacemaker or artificial joint, or who use broad-spectrum antibiotics. Approximately 60,000 Americans develop such invasive C. albicans infections each year.

Central to such infections is a substance called biofilm matrix. A biofilm is a population of microbes, in this case C. albicans cells, joined together to form a sheet of cells. The cells in the biofilm produce extracellular components such as proteins and sugars, which form a cement-like substance called matrix. This matrix serves to protect the cells of the biofilm, preventing drugs and other stressors from attacking the cells while acting as a glue that holds the cells together. By doing this, the matrix provides an environment in which yeast cells in the biofilm can thrive, promoting infection and drug resistance.

"Biofilms have a major impact on human health and matrix is such a pivotal component of biofilms. It is important to understand how the production of matrix is regulated," Mitchell said.

In the study published in PLoS, Mitchell and colleagues found that the zinc-responsive regulatory protein Zap1 prevents the production of soluble â-1,3 glucan, a sugar that is a major component of matrix. They also identified other genes whose expression is controlled by Zap1, called Zap1 target genes. They found that these genes encode for two types of enzymes, glucoamylases and alcohol dehydrogenases, which both govern the production and maturation of matrix components.

"Understanding this novel regulatory gene network gives us insight into the metabolic processes that contribute to biofilm formation, and the role the network plays in infection," Mitchell said. "By better understanding the mechanisms by which biofilms develop and grow, we can start to look at targets for combating infection."

According to Mitchell, the next steps will be to determine the mechanisms by which Zap1 target genes regulate matrix production. Understanding and targeting these mechanisms will allow the researchers to develop therapeutic small molecules that will block biofilm formation and diagnostic tools that can detect biofilms before infections spread.

This study was funded by the National Institutes of Health.

Other study authors include: Clarissa J. Nobile, Aaron Hernday, Oliver R. Homann, and Alexander D. Johnson, Department of Microbiology and Immunology, University of California, San Francisco; Jeniel E. Nett and David R. Andes, Department of Medicine, University of Wisconsin; and Jean-Sebastien Deneault, and Andre Nantel, Biotechnology Research Institute, National Research Council of Canada.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion comprehensive campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.cmu.edu/about/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>