Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of evolution of the primordial metabolism discovered: Avalanche of reactions at the origin of life

19.01.2012
The origin of life is seen as the formation of the first biomolecules which may be subject to multiplication and further development.

Hitherto it was unclear, which reactions could have triggered the evolution of this ur-metabolism. Now scientists at the Technische Universitaet Muenchen (TUM) revealed mechanisms, by which a few biomolecules may bring forth new products in the style of an avalanche to initiate a selfexpanding metabolism.

„Chemistry – A European Journal“ now published their results. Volcanic-hydrothermal flow channels offer a chemically unique environment, which at first glance appears hostile to life. It is defined by cracks in the crust of the earth, through which water flows, laden with volcanic gases are contacting a diversity of minerals.

And yet – it is precisely this extreme environment, where the two mechanisms could have emerged, which are at the root of all life: The multiplication of biomolecules (reproduction) and the emergence of new biomolecules on the basis of previously formed biomolecules (evolution).

At the outset of this concatenation of reactions that led eventually to the formation of cellular forms of life there are only a few amino acids, which are formed from volcanic gases by mineral catalysis. Akin to a domino stone that triggers a whole avalanche, these first biomolecules stimulate not only their own further synthesis but also the production of wholly new biomolecules. “In this manner life begins by necessity in accordance with preestablished laws of chemistry and in a pre-determined direction”, declares Günter Wächtershäuser, honorary professor for evolutionary biochemistry at the University of Regensburg. He developed the mechanism of a self-generating metabolism – theoretically, alas, an experimental demonstration has been lacking so far.

Now, scientists around Claudia Huber and Wolfgang Eisenreich, at the Chair of Biochemistry in the Department of Chemistry at the TUM in close cooperation with Wächtershäuser, managed for the first time to demonstrate experimentally the possibility of such a selfstimulating mechanism. A catalyst consisting of compounds of the transition metals nickel, cobalt or iron has the lead role in these reactions. It provides not only for the formation of the first biomolecules, but it also initiates the concatenation of reactions.

The reason: The biomolecules just newly formed from the volcanic gases engage the center of the transition metal catalyst to enable further chemical reactions bringing forth wholly new biomolecules.

“This coupling between the catalyst and an organic reaction product is the first step”, explains Wächtershäuser. “Life arises, if subsequently a whole cascade of further couplings takes place, and this primordial life leads eventually to the formation of genetic material and of the first cells”.

The scientists simulated in their experiments the conditions of volcanic-hydrothermal flow channels and established an aqueous-organometallic system that produces a whole suite of different biomolecules, among them the amino acids glycin and alanin. Here the carbon source was provided by a cyano compound and the reducing agent by carbon monoxide.

Nickel compounds turned out to be the most effective catalysts in these experiments. The scientists then added the products glycin and alanin to another system, that generated again two new biomolecules. The result: The two amino acids increased the productivity oft he second system by a factor of five.

In future experiments the scientists intend to recreate more precisely the conditions of volcanic-hydrothermal systems, wherein life could have arisen billions of years ago. “For this purpose we simulate first certain stages in the development of a volcanic-hydrothermal flow system in order to determine essential parameters”, explains Wächtershäuser. “Only thereafter we may engage in a rational construction of a flow reactor”.

The results of the scientists around Wächtershäuser and Eisenreich show that an origin and evolution of life in hot water of volcanic flow ducts is feasible. The results reveal advantages of the theory compared to other approaches. Within the flow ducts temperature, pressure and pH change along the flow path, and thereby a graded spectrum of conditions is offered that is appropriate for all stages of early evolution up to the formation of genetic material (RNA/DNA).

The most important property of the system is its autonomy: As opposed to the notion of a cool prebiotic both, the first metabolism was not dependent on accidental events or an accumulation of essential components over thousands of years. As soon as the first domino stone is toppled, the others will follow automatically. The origin of life proceeds along definite trajectories, pre-established by the rules of chemistry – a chemically determined process giving rise to the tree of all forms of life.

This work was funded by the Deutsche Forschungsgemeinschaft (WA- 983/3, WA-983/4 and EI-384/3–1), the Hans-Fischer Gesellschaft and the Fonds der Chemischen Industrie.

Original publication: Elements of metabolic evolution C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914 Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Contact:
Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4 85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Technische Universitaet Muenchen (TUM) is one of Europe’s leading universities. It has roughly 460 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

Dr. Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de
http://www.biochemie.ch.tum.de/index.php?id=993

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>