Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of evolution of the primordial metabolism discovered: Avalanche of reactions at the origin of life

19.01.2012
The origin of life is seen as the formation of the first biomolecules which may be subject to multiplication and further development.

Hitherto it was unclear, which reactions could have triggered the evolution of this ur-metabolism. Now scientists at the Technische Universitaet Muenchen (TUM) revealed mechanisms, by which a few biomolecules may bring forth new products in the style of an avalanche to initiate a selfexpanding metabolism.

„Chemistry – A European Journal“ now published their results. Volcanic-hydrothermal flow channels offer a chemically unique environment, which at first glance appears hostile to life. It is defined by cracks in the crust of the earth, through which water flows, laden with volcanic gases are contacting a diversity of minerals.

And yet – it is precisely this extreme environment, where the two mechanisms could have emerged, which are at the root of all life: The multiplication of biomolecules (reproduction) and the emergence of new biomolecules on the basis of previously formed biomolecules (evolution).

At the outset of this concatenation of reactions that led eventually to the formation of cellular forms of life there are only a few amino acids, which are formed from volcanic gases by mineral catalysis. Akin to a domino stone that triggers a whole avalanche, these first biomolecules stimulate not only their own further synthesis but also the production of wholly new biomolecules. “In this manner life begins by necessity in accordance with preestablished laws of chemistry and in a pre-determined direction”, declares Günter Wächtershäuser, honorary professor for evolutionary biochemistry at the University of Regensburg. He developed the mechanism of a self-generating metabolism – theoretically, alas, an experimental demonstration has been lacking so far.

Now, scientists around Claudia Huber and Wolfgang Eisenreich, at the Chair of Biochemistry in the Department of Chemistry at the TUM in close cooperation with Wächtershäuser, managed for the first time to demonstrate experimentally the possibility of such a selfstimulating mechanism. A catalyst consisting of compounds of the transition metals nickel, cobalt or iron has the lead role in these reactions. It provides not only for the formation of the first biomolecules, but it also initiates the concatenation of reactions.

The reason: The biomolecules just newly formed from the volcanic gases engage the center of the transition metal catalyst to enable further chemical reactions bringing forth wholly new biomolecules.

“This coupling between the catalyst and an organic reaction product is the first step”, explains Wächtershäuser. “Life arises, if subsequently a whole cascade of further couplings takes place, and this primordial life leads eventually to the formation of genetic material and of the first cells”.

The scientists simulated in their experiments the conditions of volcanic-hydrothermal flow channels and established an aqueous-organometallic system that produces a whole suite of different biomolecules, among them the amino acids glycin and alanin. Here the carbon source was provided by a cyano compound and the reducing agent by carbon monoxide.

Nickel compounds turned out to be the most effective catalysts in these experiments. The scientists then added the products glycin and alanin to another system, that generated again two new biomolecules. The result: The two amino acids increased the productivity oft he second system by a factor of five.

In future experiments the scientists intend to recreate more precisely the conditions of volcanic-hydrothermal systems, wherein life could have arisen billions of years ago. “For this purpose we simulate first certain stages in the development of a volcanic-hydrothermal flow system in order to determine essential parameters”, explains Wächtershäuser. “Only thereafter we may engage in a rational construction of a flow reactor”.

The results of the scientists around Wächtershäuser and Eisenreich show that an origin and evolution of life in hot water of volcanic flow ducts is feasible. The results reveal advantages of the theory compared to other approaches. Within the flow ducts temperature, pressure and pH change along the flow path, and thereby a graded spectrum of conditions is offered that is appropriate for all stages of early evolution up to the formation of genetic material (RNA/DNA).

The most important property of the system is its autonomy: As opposed to the notion of a cool prebiotic both, the first metabolism was not dependent on accidental events or an accumulation of essential components over thousands of years. As soon as the first domino stone is toppled, the others will follow automatically. The origin of life proceeds along definite trajectories, pre-established by the rules of chemistry – a chemically determined process giving rise to the tree of all forms of life.

This work was funded by the Deutsche Forschungsgemeinschaft (WA- 983/3, WA-983/4 and EI-384/3–1), the Hans-Fischer Gesellschaft and the Fonds der Chemischen Industrie.

Original publication: Elements of metabolic evolution C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914 Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Contact:
Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4 85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Technische Universitaet Muenchen (TUM) is one of Europe’s leading universities. It has roughly 460 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

Dr. Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de
http://www.biochemie.ch.tum.de/index.php?id=993

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>