Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of evolution of the primordial metabolism discovered: Avalanche of reactions at the origin of life

19.01.2012
The origin of life is seen as the formation of the first biomolecules which may be subject to multiplication and further development.

Hitherto it was unclear, which reactions could have triggered the evolution of this ur-metabolism. Now scientists at the Technische Universitaet Muenchen (TUM) revealed mechanisms, by which a few biomolecules may bring forth new products in the style of an avalanche to initiate a selfexpanding metabolism.

„Chemistry – A European Journal“ now published their results. Volcanic-hydrothermal flow channels offer a chemically unique environment, which at first glance appears hostile to life. It is defined by cracks in the crust of the earth, through which water flows, laden with volcanic gases are contacting a diversity of minerals.

And yet – it is precisely this extreme environment, where the two mechanisms could have emerged, which are at the root of all life: The multiplication of biomolecules (reproduction) and the emergence of new biomolecules on the basis of previously formed biomolecules (evolution).

At the outset of this concatenation of reactions that led eventually to the formation of cellular forms of life there are only a few amino acids, which are formed from volcanic gases by mineral catalysis. Akin to a domino stone that triggers a whole avalanche, these first biomolecules stimulate not only their own further synthesis but also the production of wholly new biomolecules. “In this manner life begins by necessity in accordance with preestablished laws of chemistry and in a pre-determined direction”, declares Günter Wächtershäuser, honorary professor for evolutionary biochemistry at the University of Regensburg. He developed the mechanism of a self-generating metabolism – theoretically, alas, an experimental demonstration has been lacking so far.

Now, scientists around Claudia Huber and Wolfgang Eisenreich, at the Chair of Biochemistry in the Department of Chemistry at the TUM in close cooperation with Wächtershäuser, managed for the first time to demonstrate experimentally the possibility of such a selfstimulating mechanism. A catalyst consisting of compounds of the transition metals nickel, cobalt or iron has the lead role in these reactions. It provides not only for the formation of the first biomolecules, but it also initiates the concatenation of reactions.

The reason: The biomolecules just newly formed from the volcanic gases engage the center of the transition metal catalyst to enable further chemical reactions bringing forth wholly new biomolecules.

“This coupling between the catalyst and an organic reaction product is the first step”, explains Wächtershäuser. “Life arises, if subsequently a whole cascade of further couplings takes place, and this primordial life leads eventually to the formation of genetic material and of the first cells”.

The scientists simulated in their experiments the conditions of volcanic-hydrothermal flow channels and established an aqueous-organometallic system that produces a whole suite of different biomolecules, among them the amino acids glycin and alanin. Here the carbon source was provided by a cyano compound and the reducing agent by carbon monoxide.

Nickel compounds turned out to be the most effective catalysts in these experiments. The scientists then added the products glycin and alanin to another system, that generated again two new biomolecules. The result: The two amino acids increased the productivity oft he second system by a factor of five.

In future experiments the scientists intend to recreate more precisely the conditions of volcanic-hydrothermal systems, wherein life could have arisen billions of years ago. “For this purpose we simulate first certain stages in the development of a volcanic-hydrothermal flow system in order to determine essential parameters”, explains Wächtershäuser. “Only thereafter we may engage in a rational construction of a flow reactor”.

The results of the scientists around Wächtershäuser and Eisenreich show that an origin and evolution of life in hot water of volcanic flow ducts is feasible. The results reveal advantages of the theory compared to other approaches. Within the flow ducts temperature, pressure and pH change along the flow path, and thereby a graded spectrum of conditions is offered that is appropriate for all stages of early evolution up to the formation of genetic material (RNA/DNA).

The most important property of the system is its autonomy: As opposed to the notion of a cool prebiotic both, the first metabolism was not dependent on accidental events or an accumulation of essential components over thousands of years. As soon as the first domino stone is toppled, the others will follow automatically. The origin of life proceeds along definite trajectories, pre-established by the rules of chemistry – a chemically determined process giving rise to the tree of all forms of life.

This work was funded by the Deutsche Forschungsgemeinschaft (WA- 983/3, WA-983/4 and EI-384/3–1), the Hans-Fischer Gesellschaft and the Fonds der Chemischen Industrie.

Original publication: Elements of metabolic evolution C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914 Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Contact:
Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4 85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Technische Universitaet Muenchen (TUM) is one of Europe’s leading universities. It has roughly 460 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

Dr. Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de
http://www.biochemie.ch.tum.de/index.php?id=993

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>