Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of evolution of the primordial metabolism discovered: Avalanche of reactions at the origin of life

19.01.2012
The origin of life is seen as the formation of the first biomolecules which may be subject to multiplication and further development.

Hitherto it was unclear, which reactions could have triggered the evolution of this ur-metabolism. Now scientists at the Technische Universitaet Muenchen (TUM) revealed mechanisms, by which a few biomolecules may bring forth new products in the style of an avalanche to initiate a selfexpanding metabolism.

„Chemistry – A European Journal“ now published their results. Volcanic-hydrothermal flow channels offer a chemically unique environment, which at first glance appears hostile to life. It is defined by cracks in the crust of the earth, through which water flows, laden with volcanic gases are contacting a diversity of minerals.

And yet – it is precisely this extreme environment, where the two mechanisms could have emerged, which are at the root of all life: The multiplication of biomolecules (reproduction) and the emergence of new biomolecules on the basis of previously formed biomolecules (evolution).

At the outset of this concatenation of reactions that led eventually to the formation of cellular forms of life there are only a few amino acids, which are formed from volcanic gases by mineral catalysis. Akin to a domino stone that triggers a whole avalanche, these first biomolecules stimulate not only their own further synthesis but also the production of wholly new biomolecules. “In this manner life begins by necessity in accordance with preestablished laws of chemistry and in a pre-determined direction”, declares Günter Wächtershäuser, honorary professor for evolutionary biochemistry at the University of Regensburg. He developed the mechanism of a self-generating metabolism – theoretically, alas, an experimental demonstration has been lacking so far.

Now, scientists around Claudia Huber and Wolfgang Eisenreich, at the Chair of Biochemistry in the Department of Chemistry at the TUM in close cooperation with Wächtershäuser, managed for the first time to demonstrate experimentally the possibility of such a selfstimulating mechanism. A catalyst consisting of compounds of the transition metals nickel, cobalt or iron has the lead role in these reactions. It provides not only for the formation of the first biomolecules, but it also initiates the concatenation of reactions.

The reason: The biomolecules just newly formed from the volcanic gases engage the center of the transition metal catalyst to enable further chemical reactions bringing forth wholly new biomolecules.

“This coupling between the catalyst and an organic reaction product is the first step”, explains Wächtershäuser. “Life arises, if subsequently a whole cascade of further couplings takes place, and this primordial life leads eventually to the formation of genetic material and of the first cells”.

The scientists simulated in their experiments the conditions of volcanic-hydrothermal flow channels and established an aqueous-organometallic system that produces a whole suite of different biomolecules, among them the amino acids glycin and alanin. Here the carbon source was provided by a cyano compound and the reducing agent by carbon monoxide.

Nickel compounds turned out to be the most effective catalysts in these experiments. The scientists then added the products glycin and alanin to another system, that generated again two new biomolecules. The result: The two amino acids increased the productivity oft he second system by a factor of five.

In future experiments the scientists intend to recreate more precisely the conditions of volcanic-hydrothermal systems, wherein life could have arisen billions of years ago. “For this purpose we simulate first certain stages in the development of a volcanic-hydrothermal flow system in order to determine essential parameters”, explains Wächtershäuser. “Only thereafter we may engage in a rational construction of a flow reactor”.

The results of the scientists around Wächtershäuser and Eisenreich show that an origin and evolution of life in hot water of volcanic flow ducts is feasible. The results reveal advantages of the theory compared to other approaches. Within the flow ducts temperature, pressure and pH change along the flow path, and thereby a graded spectrum of conditions is offered that is appropriate for all stages of early evolution up to the formation of genetic material (RNA/DNA).

The most important property of the system is its autonomy: As opposed to the notion of a cool prebiotic both, the first metabolism was not dependent on accidental events or an accumulation of essential components over thousands of years. As soon as the first domino stone is toppled, the others will follow automatically. The origin of life proceeds along definite trajectories, pre-established by the rules of chemistry – a chemically determined process giving rise to the tree of all forms of life.

This work was funded by the Deutsche Forschungsgemeinschaft (WA- 983/3, WA-983/4 and EI-384/3–1), the Hans-Fischer Gesellschaft and the Fonds der Chemischen Industrie.

Original publication: Elements of metabolic evolution C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914 Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Contact:
Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4 85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Technische Universitaet Muenchen (TUM) is one of Europe’s leading universities. It has roughly 460 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an “Elite University” in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university’s global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

Dr. Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de
http://www.biochemie.ch.tum.de/index.php?id=993

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>