Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism discovered for health benefit of green tea, new approach to autoimmune disease

03.06.2011
One of the beneficial compounds found in green tea has a powerful ability to increase the number of “regulatory T cells” that play a key role in immune function and suppression of autoimmune disease, according to new research in the Linus Pauling Institute at Oregon State University.

This may be one of the underlying mechanisms for the health benefits of green tea, which has attracted wide interest for its ability to help control inflammation, improve immune function and prevent cancer.

Pharmaceutical drugs are available that perform similar roles and have been the subject of much research, scientists say, but they have problems with toxicity. A natural food product might provide a long-term, sustainable way to accomplish this same goal without toxicity, researchers said.

“This appears to be a natural, plant-derived compound that can affect the number of regulatory T cells, and in the process improve immune function,” said Emily Ho, an LPI principal investigator and associate professor in the OSU Department of Nutrition and Exercise Sciences.

“When fully understood, this could provide an easy and safe way to help control autoimmune problems and address various diseases,” Ho said.

The findings have been published in Immunology Letters, a professional journal.

There are many types of cells that have different roles in the immune system, which is a delicate balancing act of attacking unwanted invaders without damaging normal cells. In autoimmune diseases, which can range from simple allergies to juvenile diabetes or even terminal conditions such as Lou Gehrig’s disease, this process goes awry and the body mistakenly attacks itself.

Some cells exist primarily to help control that problem and dampen or “turn off” the immune system, including regulatory T cells. The number and proper function of those regulatory T cells, in turn, is regulated by other biological processes such as transcription factors and DNA methylation.

In this study, OSU scientists did experiments with a compound in green tea, a polyphenol called EGCG, which is believed to be responsible for much of its health benefits and has both anti-inflammatory and anti-cancer characteristics. They found it could cause a higher production of regulatory T cells. Its effects were not as potent as some of those produced by prescription drugs, but it also had few concerns about long-term use or toxicity.

“EGCG may have health benefits through an epigenetic mechanism, meaning we aren’t changing the underlying DNA codes, but just influencing what gets expressed, what cells get turned on,” Ho said. “And we may be able to do this with a simple, whole-food approach.”

Laboratory studies done with mice, Ho said, showed that treatment with EGCG significantly increased the numbers and frequencies of regulatory T cells found in spleen and lymph notes, and in the process helped to control the immune response.

“Epigenetic regulation can be potentially exploited in generating suppressive regulatory T cells for therapeutic purposes, and is of significant clinical importance for the suppression of autoimmune diseases,” the researchers said in their study.

The research was done by scientists from OSU, the University of Connecticut, and Changwon National University in South Korea. The work was supported by the National Institute of Environmental Health Sciences and the Oregon Agricultural Experiment Station.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Emily Ho | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>