Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism discovered for health benefit of green tea, new approach to autoimmune disease

03.06.2011
One of the beneficial compounds found in green tea has a powerful ability to increase the number of “regulatory T cells” that play a key role in immune function and suppression of autoimmune disease, according to new research in the Linus Pauling Institute at Oregon State University.

This may be one of the underlying mechanisms for the health benefits of green tea, which has attracted wide interest for its ability to help control inflammation, improve immune function and prevent cancer.

Pharmaceutical drugs are available that perform similar roles and have been the subject of much research, scientists say, but they have problems with toxicity. A natural food product might provide a long-term, sustainable way to accomplish this same goal without toxicity, researchers said.

“This appears to be a natural, plant-derived compound that can affect the number of regulatory T cells, and in the process improve immune function,” said Emily Ho, an LPI principal investigator and associate professor in the OSU Department of Nutrition and Exercise Sciences.

“When fully understood, this could provide an easy and safe way to help control autoimmune problems and address various diseases,” Ho said.

The findings have been published in Immunology Letters, a professional journal.

There are many types of cells that have different roles in the immune system, which is a delicate balancing act of attacking unwanted invaders without damaging normal cells. In autoimmune diseases, which can range from simple allergies to juvenile diabetes or even terminal conditions such as Lou Gehrig’s disease, this process goes awry and the body mistakenly attacks itself.

Some cells exist primarily to help control that problem and dampen or “turn off” the immune system, including regulatory T cells. The number and proper function of those regulatory T cells, in turn, is regulated by other biological processes such as transcription factors and DNA methylation.

In this study, OSU scientists did experiments with a compound in green tea, a polyphenol called EGCG, which is believed to be responsible for much of its health benefits and has both anti-inflammatory and anti-cancer characteristics. They found it could cause a higher production of regulatory T cells. Its effects were not as potent as some of those produced by prescription drugs, but it also had few concerns about long-term use or toxicity.

“EGCG may have health benefits through an epigenetic mechanism, meaning we aren’t changing the underlying DNA codes, but just influencing what gets expressed, what cells get turned on,” Ho said. “And we may be able to do this with a simple, whole-food approach.”

Laboratory studies done with mice, Ho said, showed that treatment with EGCG significantly increased the numbers and frequencies of regulatory T cells found in spleen and lymph notes, and in the process helped to control the immune response.

“Epigenetic regulation can be potentially exploited in generating suppressive regulatory T cells for therapeutic purposes, and is of significant clinical importance for the suppression of autoimmune diseases,” the researchers said in their study.

The research was done by scientists from OSU, the University of Connecticut, and Changwon National University in South Korea. The work was supported by the National Institute of Environmental Health Sciences and the Oregon Agricultural Experiment Station.

About the Linus Pauling Institute: The Linus Pauling Institute at OSU is a world leader in the study of micronutrients and their role in promoting optimum health or preventing and treating disease. Major areas of research include heart disease, cancer, aging and neurodegenerative disease.

Emily Ho | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>