Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism discovered for attaching an “on” switch that helps cells accessorize proteins

20.06.2014

St. Jude Children’s Research Hospital scientists advance understanding of how cells manage their vast array of proteins and how system failures can lead to cancer and other diseases

St. Jude Children’s Research Hospital scientists have discovered how an important “on” switch is attached to the machinery that cells rely on to adapt thousands of proteins to meet changing conditions. The research appears in the current issue of the journal Cell.

The switch is a small protein called NEDD8. Problems with NEDD8 have been associated with several cancers, developmental disorders and infectivity of the human immunodeficiency virus (HIV), which causes AIDS. Drugs that target NEDD8 are in anti-cancer clinical trials. The ability of HIV to evade the anti-viral immune response depends in part on the ability of the virus to hijack the NEDD8 machinery.

NEDD8 is also a key component of the machinery that cells use to adapt to changing conditions. Just as individuals adapt to changes in their environment by donning gloves, boots, hats and other accessories, cells adapt by “accessorizing” proteins to modify their function.

NEDD8 is a specialized accessory. It functions as the “on” switch for accessorizing 10 to 20 percent of the thousands of proteins that do the work of cells. Those accessories mark some proteins for elimination, others for a change in function and others for relocation to different parts of the cell. Until now, however, how NEDD8 slipped into position was unknown.

Researchers showed how part of the machinery for accessorizing proteins, a component called cullin-RING, is first modified by NEDD8. The addition of NEDD8 transforms the ability of cullin-RING to accessorize other proteins. Those proteins are involved in important biological functions such as cell division, immune response and embryonic development.

“This discovery is a major advance in understanding the machinery cells use to regulate an astonishingly vast number of proteins they depend on as well as the diseases that arise when the system malfunctions,” said corresponding author Brenda Schulman, Ph.D., a member of the St. Jude Department of Structural Biology and a Howard Hughes Medical Institute (HHMI) investigator.

Schulman and her colleagues study the machinery that manages the accessorizing process, whether the accessory is NEDD8 or a different small protein called ubiquitin. Ubiquitin accessorizes proteins though a process known as ubiquitination. Cullin-RING, which NEDD8 accessorizes, is a major command center of ubiquitination.

This study builds on an observation first author Daniel Scott, Ph.D., made shortly after joining Schulman’s laboratory in 2006. Scott, an HHMI research specialist III, showed that while ubiquitin could be coaxed into binding to and accessorizing cullin-RING, NEDD8 was the preferred partner.

Scott used a technique called X-ray crystallography to capture a crystal structure that explained why. In the process, investigators determined for the first time that different components of the ubiquitination machinery work cooperatively to align NEDD8 and cullin-RING. That alignment promotes the transfer of NEDD8 rather than ubiquitin to the proper site on cullin-RING. The transfer of NEDD8 allows other proteins to be accessorized with ubiquitin.

The mechanism outlined in this research establishes a paradigm for understanding protein regulation in cells, Schulman said. “This research sets the stage for broadly understanding this key aspect of protein regulation in cells,” Scott said.

The study’s other authors are Vladislav Sviderskiy and Shein Ei Cho, both of St. Jude; Julie Monda, formerly of St. Jude and now of the Massachusetts Institute of Technology, Cambridge, Mass.; and John Lydeard and J. Wade Harper, both of Harvard Medical School, Boston.

The research was funded in part by a Cancer Center Support Grant (CA021765) from the National Cancer Institute at the National Institutes of Health (NIH); grants (GM069530, AG011085) from the National Institute of General Medical Sciences at the NIH; the Howard Hughes Medical Institute, Damon Runyon Cancer Research Foundation and ALSAC.

St. Jude Media Relations Contacts

Carrie Strehlau
(desk) 901-595-2295
(cell) 901-297-9875
carrie.strehlau@stjude.org

Summer Freeman
(desk) 901-595-3061
(cell) 901-297-9861
summer.freeman@stjude.org

Carrie Strehlau | Eurek Alert!
Further information:
http://www.stjude.org/stjude/v/index.jsp?vgnextoid=437e6743230b6410VgnVCM100000290115acRCRD&cpsextcurrchannel=1

Further reports about: Cancer HIV NEDD8 NIH conditions immune proteins thousands ubiquitination

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>