Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism discovered for communication between proteins that cause ‘cell suicide’

28.09.2010
A recent study undertaken by investigators at five research centres, amongst which is the CSIC-University of the Basque Country Biophysics Unit, provides new clues for the understanding of the ‘cell suicide’ process. The research was published in the latest issue of the prestigious Cell journal.

Our bodies daily eliminate in a controlled manner more than 100 million defective cells, by means of a procedure known as ‘cell suicide’ or apoptosis. This is a highly complicated process, any imbalances thus arising causing serious diseases, prominent amongst which is cancer.

Over the past two decades it has been possible to identify various cellular components involved in apoptosis. Nevertheless, there are still important unresolved questions about the functioning of certain key elements in this great cell riddle. This study has revealed that three essential components of the apoptotic process, the BAX and DRP-1 proteins and cardiolipin, act in a joint manner to produce a large hole in the external membrane of the mitochondria, proving to be lethal for the cell.

But probably the most surprising aspect of the research is that the researchers have managed to decipher a new ‘language’ used by BAX and DRP-1 for communicating: these two proteins do not interact with each other physically, as usually happens, but they do so through the lipids of the membrane. “More specifically, what one of the proteins (DRP-1) does is to deform the lipid bilayer of the membrane and the resulting structure is what apparently enables the activation of the second protein (BAX)”, explained Mr Gorka Basañez, from the CSIC-UPV/EHU Biophysics Unit, and one of the authors of the research. These findings can open new ways to the rational development of anti-tumour pharmaceutical drugs, specifically targeting these components of the apoptotic cell machinery.

Taking part in this research, led by Professor Jean-Claude Martinou of the Department of Cell Biology at the University of Geneva (Switzerland), were, apart from the CSIC-UPV/EHU Biophysics Unit, the universities of Salzburg (Germany), Hanover (Germany) and Florida (USA).

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biophysics CSIC-UPV/EHU DRP-1 Germany cell death pharmaceutical drug

More articles from Life Sciences:

nachricht Plankton swim against the current
12.12.2017 | Schweizerischer Nationalfonds SNF

nachricht To differentiate or not to differentiate?
12.12.2017 | Max-Planck-Institut für Biologie des Alterns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>