Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism discovered for communication between proteins that cause ‘cell suicide’

28.09.2010
A recent study undertaken by investigators at five research centres, amongst which is the CSIC-University of the Basque Country Biophysics Unit, provides new clues for the understanding of the ‘cell suicide’ process. The research was published in the latest issue of the prestigious Cell journal.

Our bodies daily eliminate in a controlled manner more than 100 million defective cells, by means of a procedure known as ‘cell suicide’ or apoptosis. This is a highly complicated process, any imbalances thus arising causing serious diseases, prominent amongst which is cancer.

Over the past two decades it has been possible to identify various cellular components involved in apoptosis. Nevertheless, there are still important unresolved questions about the functioning of certain key elements in this great cell riddle. This study has revealed that three essential components of the apoptotic process, the BAX and DRP-1 proteins and cardiolipin, act in a joint manner to produce a large hole in the external membrane of the mitochondria, proving to be lethal for the cell.

But probably the most surprising aspect of the research is that the researchers have managed to decipher a new ‘language’ used by BAX and DRP-1 for communicating: these two proteins do not interact with each other physically, as usually happens, but they do so through the lipids of the membrane. “More specifically, what one of the proteins (DRP-1) does is to deform the lipid bilayer of the membrane and the resulting structure is what apparently enables the activation of the second protein (BAX)”, explained Mr Gorka Basañez, from the CSIC-UPV/EHU Biophysics Unit, and one of the authors of the research. These findings can open new ways to the rational development of anti-tumour pharmaceutical drugs, specifically targeting these components of the apoptotic cell machinery.

Taking part in this research, led by Professor Jean-Claude Martinou of the Department of Cell Biology at the University of Geneva (Switzerland), were, apart from the CSIC-UPV/EHU Biophysics Unit, the universities of Salzburg (Germany), Hanover (Germany) and Florida (USA).

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biophysics CSIC-UPV/EHU DRP-1 Germany cell death pharmaceutical drug

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>