Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism discovered for communication between proteins that cause ‘cell suicide’

28.09.2010
A recent study undertaken by investigators at five research centres, amongst which is the CSIC-University of the Basque Country Biophysics Unit, provides new clues for the understanding of the ‘cell suicide’ process. The research was published in the latest issue of the prestigious Cell journal.

Our bodies daily eliminate in a controlled manner more than 100 million defective cells, by means of a procedure known as ‘cell suicide’ or apoptosis. This is a highly complicated process, any imbalances thus arising causing serious diseases, prominent amongst which is cancer.

Over the past two decades it has been possible to identify various cellular components involved in apoptosis. Nevertheless, there are still important unresolved questions about the functioning of certain key elements in this great cell riddle. This study has revealed that three essential components of the apoptotic process, the BAX and DRP-1 proteins and cardiolipin, act in a joint manner to produce a large hole in the external membrane of the mitochondria, proving to be lethal for the cell.

But probably the most surprising aspect of the research is that the researchers have managed to decipher a new ‘language’ used by BAX and DRP-1 for communicating: these two proteins do not interact with each other physically, as usually happens, but they do so through the lipids of the membrane. “More specifically, what one of the proteins (DRP-1) does is to deform the lipid bilayer of the membrane and the resulting structure is what apparently enables the activation of the second protein (BAX)”, explained Mr Gorka Basañez, from the CSIC-UPV/EHU Biophysics Unit, and one of the authors of the research. These findings can open new ways to the rational development of anti-tumour pharmaceutical drugs, specifically targeting these components of the apoptotic cell machinery.

Taking part in this research, led by Professor Jean-Claude Martinou of the Department of Cell Biology at the University of Geneva (Switzerland), were, apart from the CSIC-UPV/EHU Biophysics Unit, the universities of Salzburg (Germany), Hanover (Germany) and Florida (USA).

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Biophysics CSIC-UPV/EHU DRP-1 Germany cell death pharmaceutical drug

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>