Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism discovered by which body's cells encourage tuberculosis infection

11.12.2009
Finding how to block the pathway may lead to new therapies for TB and other disorders

Scientists have discovered a signaling pathway that tuberculosis bacteria use to coerce disease-fighting cells to switch allegiance and work on their behalf.

Epithelial cells line the airways and other surfaces to protect and defend the body. Tuberculosis bacteria co-opt these epithelial cells into helping create tubercles: the small, rounded masses characteristic of TB. The tubercles enable the bacteria to expand their numbers and spread to other locations.

By inciting parts of the immune system to go into overdrive, this same molecular signaling pathway may play other roles in inflammatory conditions such as arthritis and some forms of heart disease and cancer

"If we could keep this pathway from inciting the host immune system, we may be well on the way to finding innovative new therapies against TB, as well as other serious disorders," said the senior researcher on the study, Dr. Lalita Ramakrishnan, University of Washington (UW) associate professor of microbiology, medicine, and immunology. The results appear in the Dec. 10, 2009 express edition of Science.

Global health researchers are eager for new treatments for TB because many strains worldwide have become resistant to standard antimicrobials. Blocking a host pathway that the bacteria use would be an entirely different approach, Ramakrishnan explained, because it would keep the body from allowing the infection to take hold and be sustained, rather than a treatment aimed at killing the bacteria themselves. A host pathway blocker, if one becomes available, might also be quicker than current therapies, which take a long time to subdue the TB infection.

"Most diseases, such as high blood pressure and depression, are already being treated by blockers and inhibitors of host enzymes and pathways," Ramakrishnan noted, "Many of these turn down certain cell signals as part of their therapeutic action. We and some other researchers are now exploring the possibility of blocking or inhibiting molecular mechanisms in the body to prevent or treat infectious diseases as well. "

Earlier studies in the zebrafish by the Ramakrishnan lab demonstrated that TB tubercles were not, as previously thought, the way that the body walls off the bacteria to protect itself. Instead, these nodules (also called granulomas) are hubs for bacteria production and distribution. Uninfected macrophages – the body's frontline soldiers that can eat and destroy many bacteria – are recruited to the nodules, where they become TB-infected. However, the TB bacteria are able to grow in the macrophages, rather than being killed, likely by dampening the macrophages' defenses.

So by wooing more macrophages into the granuloma, the bacteria can use them to expand further. Some germ-laded macrophages then move to a new location, where they again attract more macrophages. New tubercles form and the scene is repeated.

Ramakrishnan and her research team have identified a molecular mechanism by which the mycobacteria that cause TB induce the body to form these production and distribution nodules. Researchers have long known that TB virulence is associated with a small protein the bacteria secrete, called ESAT-6.

Ramakrishan's group now has found that this secreted bacterial protein induces epithelial cells – the cells that make up membranous tissue covers inside the body – to produce an enzyme called MMP9. This enzyme has many functions including breaking down gelatin – a connective tissue protein -- into its components. In people, the presence of MMP9 is associated with increased susceptibility to infection and worse outcomes. The findings of this new study explain why this might be the case. MMP9 is also implicated in the development of several non-infectious inflammatory conditions, like arthritis, as well as heart disease and cancer.

Epithelial cells were once thought to be bystanders as tuberculosis took hold, according to the research group. However, their latest findings suggest that secretion of MMP9 by epithelial cells is amplified in the vicinity of a single TB infected macrophage. The activity of this enzyme draws in uninfected macrophages to join the infected macrophage to form and expand the granuloma.

"TB bacteria may have a two-prong strategy," said the first author of the Dec. 10 Science Express report, Dr. Hannah E. Volkman, who recently received her Ph.D. from the UW Molecular and Cellular Biology Program, "whereby the bacteria simultaneously suppress the macrophages inflammatory programs in order to create a hospitable niche inside them, while prodding epithelial cells to signal more macrophages to arrive and be unwitting participants in their home expansion project."

The researchers genetically "knocked out" MMP9 production in zebrafish embryos to see if that made them more resistant to TB. After TB infection, these embryos indeed had greater survival rates, fewer bacteria, and fewer granulomas than their normal, MMP9-producing siblings. This finding suggested that intercepting the production of MMP9 in epithelial cells should be further studied as a possible TB therapy.

"These novel findings," said Dr. William Parks, a UW professor of medicine and director of the UW Center for Lung Biology who was not part of this study, "point to new ways in which the body's resident cells can effect an inflammatory response and may have relevance beyond TB infection. The pathogen-to-epithelium-to-macrophage pathway they uncovered should provide several new avenues that could be targeted for intervention."

Co-authors of the article, "Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium," in addition to Volkman and Ramakrishnan, are Tamara C. Pozos, a former UW infectious disease fellow who is now on the faculty of Children's Hospital and Clinics of Minnesota; John Zheng, a UW medical student; J. Muse Davis, an M.D./Ph.D. student at Emory University; and John F. Rawls, assistant professor of cell and molecular physiology, University of North Carolina, Chapel Hill.

The study was funded by the Burroughs Wellcome Fund, Pew Scholars Program, National Institutes of Health, American Heart Association, Pediatrics Infectious Disease Society, Children's Health Research Center, and a National Defense Science and Engineering fellowship

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>