Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism behind demethylation pinpointed in APC gene mutants

20.09.2010
Colon cancer is the second most common cancer in the United States and causes more than 50,000 deaths each year.

It has been known for some time that mutations in the APC gene occur in more than 85 percent of all sporadic colon cancers. Now researchers at Huntsman Cancer Institute at the University of Utah demonstrate in a study featured today in Cell the mechanism by which mutation of the APC gene affects a cellular process known as DNA methylation. DNA methylation is a chemical modification made to DNA that plays an important role in dictating how DNA is read and interpreted by a cell.

The group, led by David Jones, Ph.D., and Bradley Cairns, Ph.D., have now linked loss of Apc with DNA demethylase, an enzyme system that erases DNA methylation. Studies using human tissues and zebarafish demonstrate that this system is highly active in tissues harboring mutated Apc and may provide an explanation for the previously known loss of DNA methylation seen in early stage tumors. The activity of the DNA demethylase appears to stall the normal development of intestinal cells, leaving them in a stem cell-like state. Normal development was restored upon inhibition of the DNA demethylase system. The experiments conducted by the group also demonstrated that the mechanistic connection between APC mutation and demethylation is conveyed through changes in the amount of retinoic acid (RA), an important regulatory compound derived from dietary vitamin A.

"We believe that clarification of the mechanism leading to demethylation will have broad implications for a variety of cancers. Our increased understanding of the mechanics connecting APC mutation and demethylation presents new opportunities for colon cancer intervention and may lead the way to developing a truly finely tuned approach to treatment," said Jones. Cairns added, "Since the mechanism of action of the demethylase can inherently create new mutations, misregulation of the system could underlie the occurrence of mutations in additional oncogenes. Its inhibition may therefore allow us to both prevent and treat certain cancers."

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: APC APC gene Cancer DNA DNA methylation HCI Jones colon cancer human tissue mechanism

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>