Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mechanism for Cardiac Arrhythmia discovered

18.09.2008
It has long been thought that virus infections can cause cardiac arrhythmia.

But why has not been understood. Ulrike Lisewski, Dr. Yu Shi, Michael Radke and Professor Michael Gotthardt of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered the molecular mechanism.

The researchers demonstrated that the receptor which the virus uses to infect heart cells is normally necessary for regular heart beat in mice. Likewise, when the receptor is absent or non-functioning, arrhythmia occurs. They assume that both the virus infection and the autoimmune disease can block the receptor which, in turn, disrupts the heart's normal rhythm. The study has now been published online in the Journal of Experimental Medicine (10.1084/jem.20510iti3).

The heart consists of two ventricles and two atria. In order to beat correctly and to pump blood through the body, specialized heart fibres generate electric signals that control the heart beat. Cardiac arrhythmia occurs when these signals are not correctly generated or forwarded. There, a receptor, which scientists call CAR, plays an important role.

CAR stands for Coxsackievirus-Adenovirus-Receptor. It is embedded in specific cell-cell-contacts (tight junctions) of the specialized heart fibres. CAR was discovered as the critical protein responsible for virus entry during infection with Coxsackie and Adenoviruses. Its role in the adult heart was previously unknown.

To investigate CAR's task in a healthy organism, the MDC-scientists switched off the CAR-gene in adult mice. As a result, the rodents could no longer produce the receptors and developed cardiac arrhythmia. "That is an interesting observation because these special cell-cell-contacts, the tight junctions, have not been connected to arrhythmia so far", Professor Gotthardt says.

A detailed analysis of the animals showed that the transfer of electric signals from the atria to the ventricles does not work properly. "When CAR is missing, the signal can not be passed on and the heart does not beat properly," Dr. Shi says.

Professor Gotthardt now wants to investigate whether CAR is blocked in patients with arrhythmia. "However, it does not always have to be connected to a virus infection," he says. "The body's own antibodies directed against CAR could cause the disease as well."

The tight junction protein CAR regulates cardiac conduction and cell-cell communication

Ulrike Lisewski1, Yu Shi1, Uta Wrackmeyer1, Robert Fischer2, Chen Chen1, Alexander Schirdewan2, Rene Jüttner3, Fritz Rathjen3, Wolfgang Poller4, Michael H. Radke1 and Michael Gotthardt1,5

1Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine (MDC),
13122 Berlin-Buch, Germany, 2 HELIOS Kliniken GmbH, Franz-Volhard Klinik, Charité, Humboldt-
University, 13125 Berlin, Germany, 3Department of Molecular Pathology, University Hospital Tübingen,
D-72073 Tuebingen, Germany, 4 Department of Cardiology, Campus Benjamin Franklin, D-12200 Berlin,
Germany, 5Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology,

Washington State University, Pullman, Washington, 99164 USA.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>