New Mechanism for Cardiac Arrhythmia discovered

But why has not been understood. Ulrike Lisewski, Dr. Yu Shi, Michael Radke and Professor Michael Gotthardt of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now discovered the molecular mechanism.

The researchers demonstrated that the receptor which the virus uses to infect heart cells is normally necessary for regular heart beat in mice. Likewise, when the receptor is absent or non-functioning, arrhythmia occurs. They assume that both the virus infection and the autoimmune disease can block the receptor which, in turn, disrupts the heart's normal rhythm. The study has now been published online in the Journal of Experimental Medicine (10.1084/jem.20510iti3).

The heart consists of two ventricles and two atria. In order to beat correctly and to pump blood through the body, specialized heart fibres generate electric signals that control the heart beat. Cardiac arrhythmia occurs when these signals are not correctly generated or forwarded. There, a receptor, which scientists call CAR, plays an important role.

CAR stands for Coxsackievirus-Adenovirus-Receptor. It is embedded in specific cell-cell-contacts (tight junctions) of the specialized heart fibres. CAR was discovered as the critical protein responsible for virus entry during infection with Coxsackie and Adenoviruses. Its role in the adult heart was previously unknown.

To investigate CAR's task in a healthy organism, the MDC-scientists switched off the CAR-gene in adult mice. As a result, the rodents could no longer produce the receptors and developed cardiac arrhythmia. “That is an interesting observation because these special cell-cell-contacts, the tight junctions, have not been connected to arrhythmia so far”, Professor Gotthardt says.

A detailed analysis of the animals showed that the transfer of electric signals from the atria to the ventricles does not work properly. “When CAR is missing, the signal can not be passed on and the heart does not beat properly,” Dr. Shi says.

Professor Gotthardt now wants to investigate whether CAR is blocked in patients with arrhythmia. “However, it does not always have to be connected to a virus infection,” he says. “The body's own antibodies directed against CAR could cause the disease as well.”

The tight junction protein CAR regulates cardiac conduction and cell-cell communication

Ulrike Lisewski1, Yu Shi1, Uta Wrackmeyer1, Robert Fischer2, Chen Chen1, Alexander Schirdewan2, Rene Jüttner3, Fritz Rathjen3, Wolfgang Poller4, Michael H. Radke1 and Michael Gotthardt1,5

1Neuromuscular and Cardiovascular Cell Biology, Max-Delbrück-Center for Molecular Medicine (MDC),
13122 Berlin-Buch, Germany, 2 HELIOS Kliniken GmbH, Franz-Volhard Klinik, Charité, Humboldt-
University, 13125 Berlin, Germany, 3Department of Molecular Pathology, University Hospital Tübingen,
D-72073 Tuebingen, Germany, 4 Department of Cardiology, Campus Benjamin Franklin, D-12200 Berlin,
Germany, 5Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology,

Washington State University, Pullman, Washington, 99164 USA.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

Media Contact

Barbara Bachtler idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors