Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of calming hyperactivity by psychostimulant drugs identified

08.02.2012
A 7-decades mystery solved

It has long been known that psychostimulant drugs have the paradoxical effect of reducing hyperactivity. [Psychostimulant drugs include methylphenidate – known by the trade names Ritalin, Concerta, and Methylin – and methamphetamine]. Since the mid-1950s, millions of children and adults have been prescribed stimulant medications to control attention deficit hyperactivity disorder (ADHD). But for more than seven decades, since the first experiment that gave an amphetamine drug to children diagnosed with behavioral problems, scientists have not known how stimulants work to control hyperactivity.

Now, a researcher at SUNY Downstate Medical Center, working with colleagues in Mexico, has identified the probable mechanism by which certain stimulants accomplish this paradoxical reduction of motor activity. David Erlij, MD, PhD, professor of physiology and pharmacology at SUNY Downstate, and fellow researchers have identified a network of nerve terminals where stimulation of dopamine D4 receptors depresses motor activity. "This network is localized deep in the brain, in the basal ganglia and the thalamus," says Dr. Erlij, "and its responses explain the reduction in motor activity caused by psychostimulants."

The findings were published in a recent edition of the journal, Neuropharmacology, and were conducted in an animal model. Dr. Erlij notes, "When, in 1937, Dr. Charles Bradley administered Benzedrine to a group of children with hyperactivity and learning disorders and discovered that 'fourteen children responded in a spectacular fashion,' a new era of psychopharmacology was inaugurated. Bradley showed, for the first time, that taking a pill could successfully treat a behavioral abnormality. Eventually, this discovery led to the widespread use of psychostimulant drugs in the treatment of ADHD."

"Despite their well established beneficial effects, it was not understood why psychostimulant drugs, which normally amplify the stimulatory responses of dopamine signals, reduce hyperactivity," says Dr. Erlij. "Our results suggest that enhancing dopamine D4 transmission in the basal ganglia and the thalamus is likely part of the mechanism of the therapeutic effects of psychostimulants on ADHD."

Dr. Erlij adds that the therapeutic action of psychostimulants in ADHD suggests that this condition is caused by abnormalities of dopamine signaling in the brain, and that, in ADHD patients, the dopamine D4 receptor gene is abnormal. He concludes, "Now that we know with some precision where calming of hyperactivity is likely taking place in the brain, it may be possible to develop new and better treatment modalities."

SUNY Downstate Medical Center, founded in 1860, was the first medical school in the United States to bring teaching out of the lecture hall and to the patient's bedside. A center of innovation and excellence in research and clinical service delivery, SUNY Downstate Medical Center comprises a College of Medicine, Colleges of Nursing and Health Related Professions, a School of Graduate Studies, a School of Public Health, University Hospital of Brooklyn, and an Advanced Biotechnology Park and Biotechnology Incubator.

SUNY Downstate ranks ninth nationally in the number of alumni who are on the faculty of American medical schools. More physicians practicing in New York City have graduated from SUNY Downstate than from any other medical school.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>