Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of calming hyperactivity by psychostimulant drugs identified

08.02.2012
A 7-decades mystery solved

It has long been known that psychostimulant drugs have the paradoxical effect of reducing hyperactivity. [Psychostimulant drugs include methylphenidate – known by the trade names Ritalin, Concerta, and Methylin – and methamphetamine]. Since the mid-1950s, millions of children and adults have been prescribed stimulant medications to control attention deficit hyperactivity disorder (ADHD). But for more than seven decades, since the first experiment that gave an amphetamine drug to children diagnosed with behavioral problems, scientists have not known how stimulants work to control hyperactivity.

Now, a researcher at SUNY Downstate Medical Center, working with colleagues in Mexico, has identified the probable mechanism by which certain stimulants accomplish this paradoxical reduction of motor activity. David Erlij, MD, PhD, professor of physiology and pharmacology at SUNY Downstate, and fellow researchers have identified a network of nerve terminals where stimulation of dopamine D4 receptors depresses motor activity. "This network is localized deep in the brain, in the basal ganglia and the thalamus," says Dr. Erlij, "and its responses explain the reduction in motor activity caused by psychostimulants."

The findings were published in a recent edition of the journal, Neuropharmacology, and were conducted in an animal model. Dr. Erlij notes, "When, in 1937, Dr. Charles Bradley administered Benzedrine to a group of children with hyperactivity and learning disorders and discovered that 'fourteen children responded in a spectacular fashion,' a new era of psychopharmacology was inaugurated. Bradley showed, for the first time, that taking a pill could successfully treat a behavioral abnormality. Eventually, this discovery led to the widespread use of psychostimulant drugs in the treatment of ADHD."

"Despite their well established beneficial effects, it was not understood why psychostimulant drugs, which normally amplify the stimulatory responses of dopamine signals, reduce hyperactivity," says Dr. Erlij. "Our results suggest that enhancing dopamine D4 transmission in the basal ganglia and the thalamus is likely part of the mechanism of the therapeutic effects of psychostimulants on ADHD."

Dr. Erlij adds that the therapeutic action of psychostimulants in ADHD suggests that this condition is caused by abnormalities of dopamine signaling in the brain, and that, in ADHD patients, the dopamine D4 receptor gene is abnormal. He concludes, "Now that we know with some precision where calming of hyperactivity is likely taking place in the brain, it may be possible to develop new and better treatment modalities."

SUNY Downstate Medical Center, founded in 1860, was the first medical school in the United States to bring teaching out of the lecture hall and to the patient's bedside. A center of innovation and excellence in research and clinical service delivery, SUNY Downstate Medical Center comprises a College of Medicine, Colleges of Nursing and Health Related Professions, a School of Graduate Studies, a School of Public Health, University Hospital of Brooklyn, and an Advanced Biotechnology Park and Biotechnology Incubator.

SUNY Downstate ranks ninth nationally in the number of alumni who are on the faculty of American medical schools. More physicians practicing in New York City have graduated from SUNY Downstate than from any other medical school.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>