Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism of aerosol aging identified

05.10.2012
International research group shows that the aging of organic aerosols is caused by OH radicals / Climate models need to be updated

Atmospheric aerosol particles have a significant effect on climate. An international team of researchers has now discovered that a chemical process in the atmosphere called aging determines to a major extent the concentration and the characteristics of aerosol particles. To date, this aspect has not been accounted for in regional and global climate models.

In the Muchachas [Multiple Chamber Aerosol Chemical Aging Experiments] project, the team has not only managed to demonstrate the effects of aging but has also been able to measure these. Their findings have been published in the specialist journal Proceedings of the National Academy of Sciences of the USA (PNAS).

The quality of air is determined to a considerable extent by aerosol particles. In the form of a fine dust, they are believed to be responsible for a series of respiratory diseases and cardiovascular disorders. In addition, aerosol particles also have various effects on atmospheric radiation balance.
Aerosols make a direct contribution to radiation levels in the cloud-free atmosphere by dispersing, reflecting, and absorbing sunlight. Aerosols are also essential for cloud formation in the troposphere: They act as condensation nuclei which even in the presence of low levels of water vapor do enable droplets to form.

The size and concentration of aerosol particles is also of great importance for the number of cloud drops, which in turn influences the reflection characteristics of clouds. Hence, aerosol particles tend to have a cooling influence on the atmosphere. However, the precise processes and feedback mechanisms have not yet been fully understood, so that the interaction between aerosol particles, their suitability as cloud condensation nuclei, and the sunlight reflected off the earth's surface represented one of the greatest uncertainties in the calculation of climatic activity.
The Muchachas project looked at organic aerosols, which constitute the largest proportion of chemical airborne particles. Organic aerosols are generated above forests, for example, and they are visible in the form of a blue mist in certain places such as the Great Smoky Mountains, the Blue Ridge Mountains, and the Blue Mountains. In densely populated areas however, anthropogenically generated and released hydrocarbons play an important role as precursor of the development of secondary organic aerosols.

The experiments showed that the mass and composition of organic aerosols are significantly influenced by OH radicals. OH radicals are the most important oxidants in the atmosphere and make an important contribution to keeping air clean. Researchers from Pittsburgh (USA), Juelich, Karlsruhe, and Mainz (Germany), Gothenburg (Sweden), Copenhagen (Denkmark), and Villigen (Switzerland) analyzed results in four different, large-volume atmospheric simulation chambers and found that the oxidation process called chemical aging has a significant impact and influence on the characteristics and concentration of organic aerosols over their entire life cycle.
"New climate models will have to take these findings into account," says Professor Dr. Thorsten Hoffmann of the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz (JGU) in Germany. The Mainz researchers contributed primarily to the development of analytical techniques for studying the chemical composition of the aerosol particles in the Muchachas project. Thanks to their development of so-called 'soft ionization' techniques and the corresponding mass spectrometers, Hoffmann's work group was able to track the concentration of individual molecule species in the atmospheric simulation chamber and thus observe the chemical aging of the atmospheric aerosols at the molecular level. It was clearly demonstrated that oxidation occurred in the gaseous phase and not in the particle phase. "Now the goal is to integrate these underlying reactions in models of regional and global atmospheric chemistry and so reduce the discrepancy between the expected and the actually observed concentrations of organic aerosol particles," explains Hoffmann.

Images:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas1.jpg
Processes investigated in the MUCHACHAS Project
source/©: AG Hoffmann, JGU

http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas2.jpg
The Blue Mountains in Australia
source/©: AG Hoffmann, JGU
http://www.uni-mainz.de/bilder_presse/09_anorganische_chemie_muchachas3.jpg
Online aerosol mass spectrometer in a measurement container during an analytical run

source/©: AG Hoffmann, JGU

Publication:
Donahue et al.
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
PNAS, 21 August 2012
DOI: 10.1073/pnas.1115186109
http://www.pnas.org/content/109/34/13503.full

Further information:
Professor Dr. Thorsten Hoffmann
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz (JGU)
D 55099 Mainz, GERMANY
phone +49 6131 39-25716
fax +49 6131 39-25336
e-mail: t.hoffmann@uni-mainz.de
http://www.ak-hoffmann.chemie.uni-mainz.de/index_ENG.php

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de
http://www.uni-mainz.de/presse/15768_ENG_HTML.php

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>