Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meat-Eating Dinosaur from Argentina Had Bird-Like Breathing System

01.10.2008
The remains of a 30-foot-long predatory dinosaur discovered along the banks of Argentina's Rio Colorado is helping to unravel how birds evolved their unusual breathing system.

University of Michigan paleontologist Jeffrey Wilson was part of the team that made the discovery, to be published Sept. 29 in the online journal Public Library of Science ONE and announced at a news conference in Mendoza, Argentina.

The discovery of this dinosaur builds on decades of paleontological research indicating that birds evolved from dinosaurs.

Birds have a breathing system that is unique among land animals. Instead of lungs that expand, birds have a system of bellows, or air sacs, which help pump air through the lungs. This novel feature is the reason birds can fly higher and faster than bats, which, like all mammals, expand their lungs in a less efficient breathing process.

Wilson was a University of Chicago graduate student working with noted dinosaur authority Paul Sereno on the 1996 expedition during which the dinosaur, named Aerosteon riocoloradensis ("air bones from the Rio Colorado") was found. Although the researchers were excited to find such a complete skeleton, it took on even more importance as they began to understand that its bones preserved hallmark features of a bird-like respiratory system.

Arriving at that understanding took some time. Laboratory technicians spent years cleaning and CT-scanning the bones, which were embedded in hard rock, to finally reveal the evidence of air sacs within Aerosteon’s body cavity. Previously, paleontologists had found only tantalizing evidence in the backbone, outside the cavity with the lungs.

Wilson worked with Sereno and the rest of the team to scientifically describe and interpret the find. The vertebrae, clavicles, and hip bones bear small openings that lead into large, hollow spaces that would have been lined with a thin layer of soft tissue and filled with air in life. These chambers result from a process called pneumatization, in which outpocketings of the lungs (air sacs) invade the bones. Air-filled bones are the hallmark of the bellows system of breathing in birds and also are found in sauropods, the long-necked, long-tailed, plant-eating dinosaurs that Wilson studies.

"In sauropods, pneumaticity was key to the evolution of large body size and long necks; in birds it was key to the evolution of a light skeleton and flight," Wilson said. "The ancient history and evolutionary path of this feature is full of surprising turns, the explanations for which must account for their presence in a huge predator like Aerosteon and herbivores like Diplodocus, as well as in a chicken."

In the PLoS ONE paper, the team proposes three possible explanations for the evolution of air sacs in dinosaurs: development of a more efficient lung; reduction of upper body mass in tipsy two-legged runners; and release of excess body heat.

Sereno, a National Geographic Explorer-in-Residence, said he is especially intrigued by heat loss, given that Aerosteon was likely a high-energy predator with feathers but without the sweat glands that birds possess. At approximately 30 feet in length and weighing as much as an elephant, Aerosteon might well have used an air system under the skin to rid itself of unwanted heat.

In addition to Sereno and Wilson, coauthors of the PLoS ONE article include Ricardo Martinez and Oscar Alcober of the Universidad Nacional de San Juan, Argentina, David Varricchio of Montana State University and Hans Larsson of McGill University. The expedition that led to the discovery was supported by the National Geographic Society and The David and Lucille Packard Foundation.

For more information:
Jeffrey Wilson
http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?ExpID=1007
http://www-personal.umich.edu/~wilsonja/JAW/Home.html
National Geographic Society: http://www.nationalgeographic.com/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.nationalgeographic.com/
http://www.umich.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>