Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring protein movements with nanosecond resolution

16.03.2010
Novel method distinguishes between structurally similar folding forms
Researchers at the Department of Chemistry at the Technische Universität München (TUM) have developed a method that allows the observation of local movements in proteins on a time scale of nanoseconds to microseconds.

Upon examining movements of the protein villin using this method they found two structures that were otherwise barely distinguishable from one another. Quick nanosecond-scale structure changes essential for the protein function can take place in the one, while the other remains rigid. These results have been published in the online issue of the journal "Proceedings of the National Academy of Sciences, USA" (PNAS).

One of the five most important proteins in a cell is actin. Its filaments hold the cell together and keep its key components in their places. The protein villin links the actin filaments and thus contributes significantly to the stabilization of cell structures. Because of its small size, HP35, the part of the villin protein responsible for binding the actin filaments, has been the subject of numerous computer simulations aimed at understanding protein dynamics. However, there have been no experimental studies, as these protein movements take place on a scale of microseconds and even nanoseconds – a time scale that has, for all intents and purposes, eluded experimental access, until now.

A method developed by Professor Thomas Kiefhaber's work group, based on fast electron transfer between the different parts of a protein, now makes it possible for the first time to directly examine fast structural changes. They selected the actin-binding part of the villin protein, HP35, as a model system. The new experimental work by Thomas Kiefhaber's team has shown that the folded protein is available in two conformations that are very similar structurally, but display decidedly different dynamic properties. While significant structural changes are not possible in a rigid conformation, flexible conformations allow parts of the protein responsible for binding actin to fold and unfold on a time scale of 100 nanoseconds.

The two conformations are in equilibrium and transform into one another within one microsecond. The structural similarity of the two conformations explains why they were not previously discovered – neither in structural examinations nor in computer simulations. Using time-resolved electron transfer measurements it is now possible to differentiate between and characterize the different states based on their different motilities.

The insights from this study are fundamental to understanding the function of proteins and will help shed light of the mechanisms behind the folding and misfolding of proteins. The scientists now hope to further develop this method in order to apply it to larger proteins important for the regulation of cell functions.

Original Publication:

Andreas Reiner, Peter Henklein und Thomas Kiefhaber
An unlocking/relocking barrier in conformational fluctuations of villin headpiece subdomain.
Proc. Natl. Acad. Sci. USA, Early Online Edition. doi: 10.1073/pnas.0910001107
Link: http://www.pnas.org/content/early/2010/02/25/0910001107.abstract
Computer simulations of HP35 folding:
http://www.youtube.com/watch?v=AlfvWESPyZY
http://www.youtube.com/watch?v=gvKu3cDeoeA
Contact:
Prof. Thomas Kiefhaber
Technische Universitaet Muenchen
Chair for Biophysical Chemistry
Lichtenbergstr. 4
85748 Garching, Germany
Tel: +49 89 289 13420
Fax: +49 89 289 13416
E-mail: t.kiefhaber@ch.tum.de
Internet: http://dante.phys.chemie.tu-muenchen.de/
Technische Universität München (TUM) is one of Germany's leading universities. It has roughly 420 professors, 7,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>