Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring protein movements with nanosecond resolution

16.03.2010
Novel method distinguishes between structurally similar folding forms
Researchers at the Department of Chemistry at the Technische Universität München (TUM) have developed a method that allows the observation of local movements in proteins on a time scale of nanoseconds to microseconds.

Upon examining movements of the protein villin using this method they found two structures that were otherwise barely distinguishable from one another. Quick nanosecond-scale structure changes essential for the protein function can take place in the one, while the other remains rigid. These results have been published in the online issue of the journal "Proceedings of the National Academy of Sciences, USA" (PNAS).

One of the five most important proteins in a cell is actin. Its filaments hold the cell together and keep its key components in their places. The protein villin links the actin filaments and thus contributes significantly to the stabilization of cell structures. Because of its small size, HP35, the part of the villin protein responsible for binding the actin filaments, has been the subject of numerous computer simulations aimed at understanding protein dynamics. However, there have been no experimental studies, as these protein movements take place on a scale of microseconds and even nanoseconds – a time scale that has, for all intents and purposes, eluded experimental access, until now.

A method developed by Professor Thomas Kiefhaber's work group, based on fast electron transfer between the different parts of a protein, now makes it possible for the first time to directly examine fast structural changes. They selected the actin-binding part of the villin protein, HP35, as a model system. The new experimental work by Thomas Kiefhaber's team has shown that the folded protein is available in two conformations that are very similar structurally, but display decidedly different dynamic properties. While significant structural changes are not possible in a rigid conformation, flexible conformations allow parts of the protein responsible for binding actin to fold and unfold on a time scale of 100 nanoseconds.

The two conformations are in equilibrium and transform into one another within one microsecond. The structural similarity of the two conformations explains why they were not previously discovered – neither in structural examinations nor in computer simulations. Using time-resolved electron transfer measurements it is now possible to differentiate between and characterize the different states based on their different motilities.

The insights from this study are fundamental to understanding the function of proteins and will help shed light of the mechanisms behind the folding and misfolding of proteins. The scientists now hope to further develop this method in order to apply it to larger proteins important for the regulation of cell functions.

Original Publication:

Andreas Reiner, Peter Henklein und Thomas Kiefhaber
An unlocking/relocking barrier in conformational fluctuations of villin headpiece subdomain.
Proc. Natl. Acad. Sci. USA, Early Online Edition. doi: 10.1073/pnas.0910001107
Link: http://www.pnas.org/content/early/2010/02/25/0910001107.abstract
Computer simulations of HP35 folding:
http://www.youtube.com/watch?v=AlfvWESPyZY
http://www.youtube.com/watch?v=gvKu3cDeoeA
Contact:
Prof. Thomas Kiefhaber
Technische Universitaet Muenchen
Chair for Biophysical Chemistry
Lichtenbergstr. 4
85748 Garching, Germany
Tel: +49 89 289 13420
Fax: +49 89 289 13416
E-mail: t.kiefhaber@ch.tum.de
Internet: http://dante.phys.chemie.tu-muenchen.de/
Technische Universität München (TUM) is one of Germany's leading universities. It has roughly 420 professors, 7,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 24,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>