Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the Nanoworld: Rulers made of DNA

10.12.2012
TU Braunschweig: Scientists facilitate comparison of microscopes on the nanoscale

For only a few years, it has been possible to resolve biological structures down to the molecular scale with light microscopy, termed super-resolution microscopy. This has led to a number of new insights into biological processes.


The scheme shows a rectangle crafted from DNA with two lines of fluorophores at a distance of 70 nm. With a perfectly aligned super-resolution microscope, these lines can be resolved as is visible in the image on the right. This approach allows the construction of a multitude of structures for various types of super-resolution microscopy.

TU Braunschweig/PCI

However, there have been limits to the techniques: so far it has been difficult to distinguish between sample specific and microscope specific error sources if the images were blurry. Moreover, different techniques could not easily be compared. This issue has recently been resolved by the Technical University of Braunschweig (Nature Methods, December 2012, doi:10.1038/nmeth.2254).

Scientists from the Institute for Physical and Theoretical Chemistry developed special self-assembled nanorulers. These nanorulers are used to evaluate resolution and light-sensitivity of microscopes on the nanoscale. “In analogy to distance marks on a common ruler, spots with a defined number of fluorescent dye molecules are employed as marks”, the group leader Prof. Philip Tinnefeld describes the main principle. The scaffold of these structures is a long circular DNA molecule which is folded in the desired shape by adding hundreds of short complementary DNA staple strands. Millions of these so-called DNA origami structures can be assembled simultaneously in a single step. Depending on the desired application, the structures can be reprogrammed to host various dye molecules at different positions.

With these nanorulers the scientists can now evaluate the performance of microscopes and different microscopy techniques. The rulers can be adjusted to different sensitivities and resolutions of all common optical super-resolution techniques. Especially for the resolution range of 6-200 nm, which has become accessible a few years ago, the nanorulers provide the possibility to compare currently competing microscopy techniques.

This research has been funded by the German Research Foundation (DFG) and the Biophotonik IV program of the Federal Ministry of Education and Research (BMBF). The results possess large economic potential as manufacturers of microscopes (e.g. Leica or Zeiss) started to bring „super-resolution microscopes“ to market. In the future, the nanorulers will be distributed by the spin-off company STS Nanotechnology.

Metrology in Braunschweig:

Not only the National Metrology Institute (PTB) is based in the city. A number of institutes bundled in the Metrology Initiative Braunschweig is developing new metrological methods.

Publication:

“Fluorescence and super-resolution standards based on DNA origami”. Jürgen J. Schmied, Andreas Gietl, Phil Holzmeister, Carsten Forthmann, Christian Steinhauer, Thorben Dammeyer and Philip Tinnefeld. (Nature Methods, December 7th, 2012, doi:10.1038/nmeth.2254.)

Contact:

Prof. Dr. Philip Tinnefeld
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
Tel.: +49 531- 391 5330
E-Mail: p.tinnefeld@tu-bs.de

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-bs.de
http://www.tu-braunschweig.de/pci/forschung/tinnefeld

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>