Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the Nanoworld: Rulers made of DNA

10.12.2012
TU Braunschweig: Scientists facilitate comparison of microscopes on the nanoscale

For only a few years, it has been possible to resolve biological structures down to the molecular scale with light microscopy, termed super-resolution microscopy. This has led to a number of new insights into biological processes.


The scheme shows a rectangle crafted from DNA with two lines of fluorophores at a distance of 70 nm. With a perfectly aligned super-resolution microscope, these lines can be resolved as is visible in the image on the right. This approach allows the construction of a multitude of structures for various types of super-resolution microscopy.

TU Braunschweig/PCI

However, there have been limits to the techniques: so far it has been difficult to distinguish between sample specific and microscope specific error sources if the images were blurry. Moreover, different techniques could not easily be compared. This issue has recently been resolved by the Technical University of Braunschweig (Nature Methods, December 2012, doi:10.1038/nmeth.2254).

Scientists from the Institute for Physical and Theoretical Chemistry developed special self-assembled nanorulers. These nanorulers are used to evaluate resolution and light-sensitivity of microscopes on the nanoscale. “In analogy to distance marks on a common ruler, spots with a defined number of fluorescent dye molecules are employed as marks”, the group leader Prof. Philip Tinnefeld describes the main principle. The scaffold of these structures is a long circular DNA molecule which is folded in the desired shape by adding hundreds of short complementary DNA staple strands. Millions of these so-called DNA origami structures can be assembled simultaneously in a single step. Depending on the desired application, the structures can be reprogrammed to host various dye molecules at different positions.

With these nanorulers the scientists can now evaluate the performance of microscopes and different microscopy techniques. The rulers can be adjusted to different sensitivities and resolutions of all common optical super-resolution techniques. Especially for the resolution range of 6-200 nm, which has become accessible a few years ago, the nanorulers provide the possibility to compare currently competing microscopy techniques.

This research has been funded by the German Research Foundation (DFG) and the Biophotonik IV program of the Federal Ministry of Education and Research (BMBF). The results possess large economic potential as manufacturers of microscopes (e.g. Leica or Zeiss) started to bring „super-resolution microscopes“ to market. In the future, the nanorulers will be distributed by the spin-off company STS Nanotechnology.

Metrology in Braunschweig:

Not only the National Metrology Institute (PTB) is based in the city. A number of institutes bundled in the Metrology Initiative Braunschweig is developing new metrological methods.

Publication:

“Fluorescence and super-resolution standards based on DNA origami”. Jürgen J. Schmied, Andreas Gietl, Phil Holzmeister, Carsten Forthmann, Christian Steinhauer, Thorben Dammeyer and Philip Tinnefeld. (Nature Methods, December 7th, 2012, doi:10.1038/nmeth.2254.)

Contact:

Prof. Dr. Philip Tinnefeld
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
Tel.: +49 531- 391 5330
E-Mail: p.tinnefeld@tu-bs.de

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-bs.de
http://www.tu-braunschweig.de/pci/forschung/tinnefeld

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>