Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the Nanoworld: Rulers made of DNA

10.12.2012
TU Braunschweig: Scientists facilitate comparison of microscopes on the nanoscale

For only a few years, it has been possible to resolve biological structures down to the molecular scale with light microscopy, termed super-resolution microscopy. This has led to a number of new insights into biological processes.


The scheme shows a rectangle crafted from DNA with two lines of fluorophores at a distance of 70 nm. With a perfectly aligned super-resolution microscope, these lines can be resolved as is visible in the image on the right. This approach allows the construction of a multitude of structures for various types of super-resolution microscopy.

TU Braunschweig/PCI

However, there have been limits to the techniques: so far it has been difficult to distinguish between sample specific and microscope specific error sources if the images were blurry. Moreover, different techniques could not easily be compared. This issue has recently been resolved by the Technical University of Braunschweig (Nature Methods, December 2012, doi:10.1038/nmeth.2254).

Scientists from the Institute for Physical and Theoretical Chemistry developed special self-assembled nanorulers. These nanorulers are used to evaluate resolution and light-sensitivity of microscopes on the nanoscale. “In analogy to distance marks on a common ruler, spots with a defined number of fluorescent dye molecules are employed as marks”, the group leader Prof. Philip Tinnefeld describes the main principle. The scaffold of these structures is a long circular DNA molecule which is folded in the desired shape by adding hundreds of short complementary DNA staple strands. Millions of these so-called DNA origami structures can be assembled simultaneously in a single step. Depending on the desired application, the structures can be reprogrammed to host various dye molecules at different positions.

With these nanorulers the scientists can now evaluate the performance of microscopes and different microscopy techniques. The rulers can be adjusted to different sensitivities and resolutions of all common optical super-resolution techniques. Especially for the resolution range of 6-200 nm, which has become accessible a few years ago, the nanorulers provide the possibility to compare currently competing microscopy techniques.

This research has been funded by the German Research Foundation (DFG) and the Biophotonik IV program of the Federal Ministry of Education and Research (BMBF). The results possess large economic potential as manufacturers of microscopes (e.g. Leica or Zeiss) started to bring „super-resolution microscopes“ to market. In the future, the nanorulers will be distributed by the spin-off company STS Nanotechnology.

Metrology in Braunschweig:

Not only the National Metrology Institute (PTB) is based in the city. A number of institutes bundled in the Metrology Initiative Braunschweig is developing new metrological methods.

Publication:

“Fluorescence and super-resolution standards based on DNA origami”. Jürgen J. Schmied, Andreas Gietl, Phil Holzmeister, Carsten Forthmann, Christian Steinhauer, Thorben Dammeyer and Philip Tinnefeld. (Nature Methods, December 7th, 2012, doi:10.1038/nmeth.2254.)

Contact:

Prof. Dr. Philip Tinnefeld
Institut für Physikalische und Theoretische Chemie
Technische Universität Braunschweig
Tel.: +49 531- 391 5330
E-Mail: p.tinnefeld@tu-bs.de

Dr. Elisabeth Hoffmann | idw
Further information:
http://www.tu-bs.de
http://www.tu-braunschweig.de/pci/forschung/tinnefeld

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>