Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring modified protein structures

15.09.2014

Cells regulate protein functions in a wide variety of ways, including by modifying the protein structure. In an instant, a protein can take on another form and perform no or even the "wrong" function:

In humans, proteins that fold wrongly can cause serious diseases such as Alzheimer's, Parkinson's or cystic fibrosis. Some of these proteins also have a tendency to "infect" other molecules of the same type and congregate into insoluble so-called amyloid fibrils or plaques. These amyloids can damage cells and tissues and make people ill.

Method breaks the shackles

Until now, there has been a lack of methods that enable structurally modified proteins to be recorded quantitatively in complex biological samples. Although there is a series of techniques to study structurally modified proteins, such as x-ray crystallography, nuclear magnetic resonance spectroscopy and other spectroscopic techniques, they cannot be used to analyse complex biological samples.

Other procedures that researchers have used to study structural changes ofproteins in cells also have their limits: prior to the analysis, the proteins of interest have to be specifically marked to enable the scientists to observe them in samples. However, this approach is only possible for a few proteins in a sample.

The team headed by Paola Picotti, a professor of protein network biology, has now found a way to measure the majority of structurally modified proteins in any biological sample, which can contain thousands of different proteins. Picotti and her team have succeeded in measuring quantities of structurally modified proteins directly from a complex protein mixture as it occurs in cells, without cleaning or enriching the samples.

Combination of several methods

For their new method, the researchers combined an "old" technique and a modern approach from proteome research. First of all, familiar old digestive enzymes such as proteinase K are added to the sample, which cut the proteins depending on their structure into smaller pieces known as peptides.

The fragments can then be measured using a technique which Picotti played a key role in co-developing during her time as a postdoc at ETH Zurich (as ETH Life reported). Known as Selected Reaction Monitoring (SRM), this method enables many different peptides to be sought specifically and their quantities measured. Based on the peptides found, proteins that were originally present in the sample can be determined and quantified.

What makes it so special: the digestive enzymes cut the same kind of proteins that have different structures in different places, resulting in diverse fragments. Like a fingerprint, these fragments can be clearly assigned to the individual structures of the protein.

"This means we can use the method to analyse structural changes of specific proteins or entire protein networks in a targeted fashion and measure numerous proteins at the same time," says Picotti.

Works for protein responsible for Parkinson's

Based on their new method, the researchers devised a test to specifically measure the "healthy" and "sick" versions of the protein alpha-synuclein in complex, unpurified samples such as blood or cerebrospinal fluid. Alpha-synuclein is thought to cause Parkinson's when its structure is modified. The pathological structural variety congregates with its own kind to form amyloid fibrils, which harm neuronal cells.

With the aid of the test, the scientists managed to measure the exact amount of pathogenic and non-pathogenic alpha-synuclein directly in a complex sample. The test also yielded information on the structure of the protein. "It shows us which parts of the protein change and turn into the new pathological structure," says Picotti.

Increasing number of amyloidoses

For the time being, the concentration of alpha-synuclein cannot be used as a biomarker as the levels of the protein are too similar in the blood or cerebrospinal fluid of Parkinson's sufferers and healthy people. "Nevertheless, it is possible that the ratio of pathological versus nonpathogenic alpha-synuclein structure changes with time, along the progression of the disease" suspects the ETH-Zurich professor.

"As the new method enables us to measure both structures of the alpha-synuclein protein in a large variety of samples, it might be possible to use this to develop new biomarkers for this disease in the future," she hopes. Using the method, it might also be conceivable to discover other, as yet unknown amyloid-forming proteins that are connected to diseases without prior knowledge.

Both applications – the quantification of a specific known protein with a modified structure and the discovery of new proteins with variant structures – are highly relevant from a medicinal perspective, Picotti explains. "The number of amyloidoses, i.e. diseases that develop due to changes in protein structures, increases every year."

###

Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema P, Polverino de Laureto P, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nature Biotechnology, published online 14th Sept 2014, DOI: 10.1038/nbt.2999

Paola Picotti | Eurek Alert!
Further information:
http://www.ethz.ch/index_EN

Further reports about: ETH Measuring Parkinson's diseases fibrils fragments peptides proteins structure structures

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>