Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring modified protein structures

15.09.2014

Cells regulate protein functions in a wide variety of ways, including by modifying the protein structure. In an instant, a protein can take on another form and perform no or even the "wrong" function:

In humans, proteins that fold wrongly can cause serious diseases such as Alzheimer's, Parkinson's or cystic fibrosis. Some of these proteins also have a tendency to "infect" other molecules of the same type and congregate into insoluble so-called amyloid fibrils or plaques. These amyloids can damage cells and tissues and make people ill.

Method breaks the shackles

Until now, there has been a lack of methods that enable structurally modified proteins to be recorded quantitatively in complex biological samples. Although there is a series of techniques to study structurally modified proteins, such as x-ray crystallography, nuclear magnetic resonance spectroscopy and other spectroscopic techniques, they cannot be used to analyse complex biological samples.

Other procedures that researchers have used to study structural changes ofproteins in cells also have their limits: prior to the analysis, the proteins of interest have to be specifically marked to enable the scientists to observe them in samples. However, this approach is only possible for a few proteins in a sample.

The team headed by Paola Picotti, a professor of protein network biology, has now found a way to measure the majority of structurally modified proteins in any biological sample, which can contain thousands of different proteins. Picotti and her team have succeeded in measuring quantities of structurally modified proteins directly from a complex protein mixture as it occurs in cells, without cleaning or enriching the samples.

Combination of several methods

For their new method, the researchers combined an "old" technique and a modern approach from proteome research. First of all, familiar old digestive enzymes such as proteinase K are added to the sample, which cut the proteins depending on their structure into smaller pieces known as peptides.

The fragments can then be measured using a technique which Picotti played a key role in co-developing during her time as a postdoc at ETH Zurich (as ETH Life reported). Known as Selected Reaction Monitoring (SRM), this method enables many different peptides to be sought specifically and their quantities measured. Based on the peptides found, proteins that were originally present in the sample can be determined and quantified.

What makes it so special: the digestive enzymes cut the same kind of proteins that have different structures in different places, resulting in diverse fragments. Like a fingerprint, these fragments can be clearly assigned to the individual structures of the protein.

"This means we can use the method to analyse structural changes of specific proteins or entire protein networks in a targeted fashion and measure numerous proteins at the same time," says Picotti.

Works for protein responsible for Parkinson's

Based on their new method, the researchers devised a test to specifically measure the "healthy" and "sick" versions of the protein alpha-synuclein in complex, unpurified samples such as blood or cerebrospinal fluid. Alpha-synuclein is thought to cause Parkinson's when its structure is modified. The pathological structural variety congregates with its own kind to form amyloid fibrils, which harm neuronal cells.

With the aid of the test, the scientists managed to measure the exact amount of pathogenic and non-pathogenic alpha-synuclein directly in a complex sample. The test also yielded information on the structure of the protein. "It shows us which parts of the protein change and turn into the new pathological structure," says Picotti.

Increasing number of amyloidoses

For the time being, the concentration of alpha-synuclein cannot be used as a biomarker as the levels of the protein are too similar in the blood or cerebrospinal fluid of Parkinson's sufferers and healthy people. "Nevertheless, it is possible that the ratio of pathological versus nonpathogenic alpha-synuclein structure changes with time, along the progression of the disease" suspects the ETH-Zurich professor.

"As the new method enables us to measure both structures of the alpha-synuclein protein in a large variety of samples, it might be possible to use this to develop new biomarkers for this disease in the future," she hopes. Using the method, it might also be conceivable to discover other, as yet unknown amyloid-forming proteins that are connected to diseases without prior knowledge.

Both applications – the quantification of a specific known protein with a modified structure and the discovery of new proteins with variant structures – are highly relevant from a medicinal perspective, Picotti explains. "The number of amyloidoses, i.e. diseases that develop due to changes in protein structures, increases every year."

###

Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema P, Polverino de Laureto P, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nature Biotechnology, published online 14th Sept 2014, DOI: 10.1038/nbt.2999

Paola Picotti | Eurek Alert!
Further information:
http://www.ethz.ch/index_EN

Further reports about: ETH Measuring Parkinson's diseases fibrils fragments peptides proteins structure structures

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>