Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring evolution’s waistline

Gene expression data offer surprising evidence that embryos of different vertebrate species are most similar at intermediate stages of development

Nearly 150 years ago, noted German biologist Ernst Haeckel made the bold assertion that ‘ontogeny recapitulates phylogeny’: in other words, morphological changes that occur during an organism’s embryonic development mirror its evolutionary history.

This concept has long since been debunked, but has nevertheless provided useful starting points for considering the yet-unsolved question of how the developmental process has evolved. Naoki Irie of the RIKEN Center for Developmental Biology (CDB) in Kobe has pondered this problem since graduate school. “My main interest then and now has been to understand the basic or common rules of how animal bodies develop,” he says.

Now, as a postdoctoral fellow in Shigeru Kuratani’s laboratory at CDB, Irie has conducted an ambitious comparative analysis of four vertebrate species with the aim of resolving an ongoing debate over two prevailing evolutionary models1. The ‘funnel-like’ model, informed in part by Haeckel’s thinking, suggests that the process of vertebrate embryonic development is very similar across species at the earliest stages, but increasingly differs at later stages. In contrast, the ‘hourglass’ model suggests that the earliest and latest stages of development differ considerably, whereas the greatest similarity is observed at the intermediate stages where organ development and body patterning take place.

To resolve this so-called ‘evo-devo’ debate, Irie and Kuratani analyzed changes in expression levels of thousands of evolutionarily conserved genes at different developmental points in the mouse, chicken, frog and zebrafish. The data provided striking support for the hourglass model, with gene transcription levels most similar at the intermediate stage known as ‘pharyngula’, where the animal has developed primitive precursors of the heart, kidney, brain and other tissues. They observed particularly strong conservation of activity among the Hox genes, which contribute to limb development, as well as several growth factor genes.

These findings offer new fuel for the evo-devo debate, but also raise complicated questions. “It is puzzling for me how vertebrate embryos established differences in early developmental stages while conserving the mid-embryonic stages,” says Irie. “It’s obvious that later developmental stages will not exist if earlier stages fail to develop successfully.”

Irie now hopes to obtain further support for the hourglass model by expanding his approach to include well-characterized invertebrate species, such as the fruit fly. He also intends to dig deeper into the nuts and bolts of development. “We would like to go down to the level of tissues and primordial organs to find which structures have been conserved during evolution,” he says.

The corresponding author for this highlight is based at the Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology

Journal information

[1] Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nature Communications 2, 248 (2011)

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>