Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Unravel Key Mechanism in Pathogenesis of Osteoporosis

15.05.2009
Osteoporosis, or bone loss, is a disease that is most common in the elderly population, affecting women more often than men. Until now, it was not clear exactly how the disease develops.

Researchers of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, have now elucidated a molecular mechanism which regulates the equilibrium between bone formation and bone resorption.

Dr. Jeske J. Smink, Dr. Valérie Bégay, and Professor Achim Leutz were able to show that two different forms of a gene switch - a short isoform and a long isoform - determine this process. The MDC researchers hope these findings will lead to new therapies for this bone disease. (EMBO Journal)*.

In osteoporosis, excessive bone resorption occurs. The bones lose their density and are therefore prone to breakage. Even minor falls can lead to serious bone fractures. The interplay between two cell types determines bone density: bone forming cells (osteoblasts) and bone resorbing cells (osteoclasts). The equilibrium between these two cell types is strictly regulated to prevent the formation of either too much or too little bone.

LAP and LIP maintain the balance
Dr. Smink, Dr. Bégay, and Professor Leutz have now elucidated a complicated mechanism which maintains the equilibrium between bone formation and bone resorption. Here, the gene switch C/EBPbeta plays a major role. It exists in different forms, differing in length and number of building blocks. LAP is the term researchers use to denote the full-length isoform of C/EBPbeta, and LIP is the term for the short isoform.

LAP activates another gene switch (MafB) which suppresses the formation of bone resorbing osteoclasts. In contrast, LIP, suppresses this gene switch and thus enhances the proliferation and activity of the osteoclasts. As a result, the osteoclasts resorb more bone substance than is built by the osteoblasts. The researchers suspect that imbalance in the ratio between LAP and LIP plays a role in osteoporosis.

The activity of a signaling molecule - mTOR - determines which of the two isoforms LAP and LIP is formed. The abbreviation mTOR stands for mammalian Target of Rapamycin. The drug rapamycin inhibits mTOR and thus suppresses the formation of bone resorbing osteoclasts. Unfortunately, rapamycin has severe side-effects on the immune system. "In the future, it may be possible to develop new drugs that regulate the activity of mTOR and, thus, remedy the disturbance in osteoclast function," Professor Leutz said.

*Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB

Jeske J. Smink1,4, Valérie Bégay1,4, Ton Schoenmaker2, Esta Sterneck3, Teun J. de Vries2, and Achim Leutz1

1 Max Delbrueck Center for Molecular Medicine, Berlin, Germany.
2 Departments of Periodontology and Oral Cell Biology, Academic Centre of Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
3 National Cancer Institute, Center for Cancer Research, Frederick, MD 21702, U.S.A.

4 these authors contributed equally to this work

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>