Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Solve Puzzle of B-Cell Lymphoma Development

24.09.2012
In the germinal centers of the lymphatic system B cells produce antibodies specific for the pathogen. However, most lymphomas derive from the B cells at the germinal centers.

Now, Dr. Dinis Pedro Calado and Dr. Klaus Rajewsky of the Max Delbrück Center (MDC) have identified subgroups of B cells in germinal centers in which the proto-oncogene Myc, a critical regulator of cellular proliferation, is highly activated.


In germinal centers (here: whithin the spleen of a mouse) immune cells learn to fight pathogens with high specificity. Dr. Dinis Calado and Dr. Klaus Rajewsky now identified subpopulations of B cells at the germinal centers which express the proto-oncogene Myc (red). They showed that Myc is essential for the formation and maintenance of germinal centers. Their findings have implications for the pathogenesis of B-cell lymphomas.

(Photo: Dinis Calado/ Copyright: MDC)

They showed that the Myc gene in these subpopulations is essential for the formation and maintenance of the germinal centers. Their findings also shed light on the origin of B-cell lymphomas derived from B cells at the germinal center (Nature Immunology, DOI:10.1038/ni.2418)*.

The Myc gene is a key regulator of cellular proliferation and is frequently involved in chromosomal translocations in human lymphomas derived from B cells at the germinal center reaction. Such translocations, seen in roughly 10 percent of diffuse large B-cell lymphomas and almost all cases of sporadic Burkitt lymphoma, juxtapose Myc and enhancers in immunoglobulin loci, leading to deregulated Myc expression.
These observations have puzzled researchers for many years because translocations of this gene can only take place in those cells where Myc is active. “However, Myc is thought not to be expressed in B cells at the germinal center reaction, the progenitors of most B-cell lymphomas,” Dr. Rajewsky said. So the question was: if B cells at the germinal center reaction do not express Myc, how can they give rise to B cell lymphomas carrying Myc translocations?

Germinal centers are located in the lymphatic organs such as the spleen, lymph nodes and Peyer’s patches in the intestinal wall. In the germinal centers the B cells are confronted with antigens and quickly proliferate. For the immune system to be able to cope with the huge variety of antigens, B cells must modify their DNA through mutation (somatic hypermutation) and recombination (class-switch recombination). However, the fast proliferation together with the ongoing DNA modifications may increase the occurrence of errors, which makes the malignant transformation of B cells at the germinal center reaction probable. “B-cell lymphomas are the most common type of human lymphoid malignancies. They mostly originate either from B cells at the germinal center reaction or from B cells that have passed through the germinal center reaction,” Dr. Calado and Dr. Rajewsky pointed out.

What then is the role of the Myc gene? How can Myc be highly activated through translocations in B-cell lymphomas although it is not active in healthy B cells of the germinal center reaction? Dr. Calado and Dr. Rajewsky have now found an answer to this question. They identified subpopulations of B cells located in the germinal centers in which the Myc gene is activated. They also showed that c-Myc is essential for the formation and maintenance of the germinal centers. When they knocked out the Myc gene in B cells they could show that germinal centers could not be formed or maintained.

“The MYC-positive germinal center B-cell subpopulations are probably at high risk for malignant transformation. Our work has direct implications for the understanding of the pathogenesis of human germinal center-derived B-cell lymphomas carrying MYC chromosomal translocations and therefore can contribute to a better understanding of how these lymphomas occur,” Dr. Calado and Dr. Rajewsky said.

*The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers

Dinis Pedro Calado1,2, Yoshiteru Sasaki3, Susana A. Godinho4, Alex Pellerin1, Karl Köchert2, Barry P. Sleckman5, Ignacio Moreno de Alborán6, Martin Janz2,7, Scott Rodig8, & Klaus Rajewsky1,2

1Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA. 2Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. 4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. 6Department of Immunology and Oncology, National Centre for Biotechnology, Madrid, Spain. 7Hematology, Oncology and Tumor Immunology, Charité, University Medical School, Berlin, Germany. 8Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>