Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Solve Puzzle of B-Cell Lymphoma Development

24.09.2012
In the germinal centers of the lymphatic system B cells produce antibodies specific for the pathogen. However, most lymphomas derive from the B cells at the germinal centers.

Now, Dr. Dinis Pedro Calado and Dr. Klaus Rajewsky of the Max Delbrück Center (MDC) have identified subgroups of B cells in germinal centers in which the proto-oncogene Myc, a critical regulator of cellular proliferation, is highly activated.


In germinal centers (here: whithin the spleen of a mouse) immune cells learn to fight pathogens with high specificity. Dr. Dinis Calado and Dr. Klaus Rajewsky now identified subpopulations of B cells at the germinal centers which express the proto-oncogene Myc (red). They showed that Myc is essential for the formation and maintenance of germinal centers. Their findings have implications for the pathogenesis of B-cell lymphomas.

(Photo: Dinis Calado/ Copyright: MDC)

They showed that the Myc gene in these subpopulations is essential for the formation and maintenance of the germinal centers. Their findings also shed light on the origin of B-cell lymphomas derived from B cells at the germinal center (Nature Immunology, DOI:10.1038/ni.2418)*.

The Myc gene is a key regulator of cellular proliferation and is frequently involved in chromosomal translocations in human lymphomas derived from B cells at the germinal center reaction. Such translocations, seen in roughly 10 percent of diffuse large B-cell lymphomas and almost all cases of sporadic Burkitt lymphoma, juxtapose Myc and enhancers in immunoglobulin loci, leading to deregulated Myc expression.
These observations have puzzled researchers for many years because translocations of this gene can only take place in those cells where Myc is active. “However, Myc is thought not to be expressed in B cells at the germinal center reaction, the progenitors of most B-cell lymphomas,” Dr. Rajewsky said. So the question was: if B cells at the germinal center reaction do not express Myc, how can they give rise to B cell lymphomas carrying Myc translocations?

Germinal centers are located in the lymphatic organs such as the spleen, lymph nodes and Peyer’s patches in the intestinal wall. In the germinal centers the B cells are confronted with antigens and quickly proliferate. For the immune system to be able to cope with the huge variety of antigens, B cells must modify their DNA through mutation (somatic hypermutation) and recombination (class-switch recombination). However, the fast proliferation together with the ongoing DNA modifications may increase the occurrence of errors, which makes the malignant transformation of B cells at the germinal center reaction probable. “B-cell lymphomas are the most common type of human lymphoid malignancies. They mostly originate either from B cells at the germinal center reaction or from B cells that have passed through the germinal center reaction,” Dr. Calado and Dr. Rajewsky pointed out.

What then is the role of the Myc gene? How can Myc be highly activated through translocations in B-cell lymphomas although it is not active in healthy B cells of the germinal center reaction? Dr. Calado and Dr. Rajewsky have now found an answer to this question. They identified subpopulations of B cells located in the germinal centers in which the Myc gene is activated. They also showed that c-Myc is essential for the formation and maintenance of the germinal centers. When they knocked out the Myc gene in B cells they could show that germinal centers could not be formed or maintained.

“The MYC-positive germinal center B-cell subpopulations are probably at high risk for malignant transformation. Our work has direct implications for the understanding of the pathogenesis of human germinal center-derived B-cell lymphomas carrying MYC chromosomal translocations and therefore can contribute to a better understanding of how these lymphomas occur,” Dr. Calado and Dr. Rajewsky said.

*The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers

Dinis Pedro Calado1,2, Yoshiteru Sasaki3, Susana A. Godinho4, Alex Pellerin1, Karl Köchert2, Barry P. Sleckman5, Ignacio Moreno de Alborán6, Martin Janz2,7, Scott Rodig8, & Klaus Rajewsky1,2

1Program of Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, USA. 2Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. 4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA. 5Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA. 6Department of Immunology and Oncology, National Centre for Biotechnology, Madrid, Spain. 7Hematology, Oncology and Tumor Immunology, Charité, University Medical School, Berlin, Germany. 8Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>