Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Reveal Molecular Mechanism Underlying Severe Anomalies of the Forebrain

14.02.2012
Researchers of the Max Delbrück Centrum for Molecular Medicine (MDC) Berlin-Buch have now identified and described a molecular mechanism underlying the most common malformation of the brain in humans.
In holoprosencephaly (HPE), the forebrain (prosencephalon) is only incompletely formed. Here a binding site (receptor) for cholesterol plays a key role. If this receptor is defective, specific signals cannot be received, and the forebrain cannot separate into two hemispheres, as Dr. Annabel Christ, Professor Thomas Willnow and Dr. Annette Hammes have now shown in mice (Developmental Cell, DOI 10.1016/j.devcel.2011.11.023)*.

Cholesterol has a bad reputation because it may lead to vascular calcification in adults (atherosclerosis) as well as to heart attacks and strokes. However, cholesterol is vital for embryonic development because it controls the development of the central nervous system. The lack of it can lead to severe developmental disorders of the forebrain (prosencephalon), the largest region of the human brain. One in 250 pregnancies does not come to term due to this malformation called holoprosencephaly (HPE). One in 16000 children is born with HPE, of which the mildest form is cleft lip and palate. In severe forms of HPE the affected children do not survive the first weeks of life.
HPE may be due to genetic factors, but environmental factors such as viral infections or alcohol abuse during pregnancy may also cause the malformation. Moreover, the cholesterol metabolism is also frequently disturbed. Thus, patients whose bodies cannot produce cholesterol due to a genetic disorder inevitably have HPE.

As Professor Willnow explained, the human brain develops from the neural tube, a simple tube-like cluster of cells in the embryo. Why defects in cholesterol metabolism lead to a developmental disorder of the neural tube and to HPE is thus far not completely understood. The studies of the Berlin researchers may give a possible clue. They identified a receptor called LRP2 that is formed in the neural tube and can bind lipoproteins, which are the transport form of cholesterol.
Interestingly, this receptor also binds an important signal molecule of forebrain development (sonic hedgehog, abbreviated SHH). As the researchers demonstrated, this lipoprotein receptor drives the accumulation of SHH in the neural tube at a specific site and induces the development of the forebrain structures. The researchers now suspect that cholesterol – directly or indirectly – plays a central role in controlling the activity of this novel receptor and assume that disturbances in cholesterol metabolism lead to a loss of function of this auxiliary receptor for SHH signaling.

*LRP2 Is an Auxiliary SHH Receptor Required to Condition the Forebrain Ventral Midline for Inductive Signals
Annabel Christ1, Anna Christa1, Esther Kur1, Oleg Lioubinski1, Sebastian Bachmann2, Thomas E. Willnow1,3* and Annette Hammes1,3
1Max Delbrück Center for Molecular Medicine
2Institute for Vegetative Anatomy Charité Universitätsmedizin, D-13125 Berlin, Germany
3These authors contributed equally to this work

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>