Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Gain New Insights into Epilepsy

27.03.2014

Just as each musician in an orchestra contributes to the overall sound of a musical piece, different types of nerve cells in the brain make up the symphony of our consciousness.

They regulate and coordinate the activity of groups of neurons that represent parts of information, which they then may transmit to other brain regions. If this precise system is thrown off balance, diseases can develop.


In order to identify the nerve cells in the neuronal network which express the altered glycine receptor researchers inserted an extra gene segment that illuminates the nerve cells (purple). (Photo: Jochen Meier/Copyright: MDC)

Professor Jochen Meier of the Max Delbrück Center (MDC) investigates such processes. Together with his colleagues, he has gained new insights into epilepsy, showing why the disease may present different symptoms (Journal of Clinical Investigation, doi:10.1172/JC171472)*.

The research focus is on the glycine receptor, known from previous studies in the field of spinal cord research as an inhibitory neurotransmitter receptor. Several years ago the research group of neurobiologists showed that this receptor is molecularly altered in patients with intractable temporal lobe epilepsy, one of the most common forms of epilepsy.

Expression of the altered receptor is increased in the hippocampus, a region of the brain that triggers seizures in most patients at later stages of the disease.

Professor Meier, who leads a Helmholtz junior research group at the explained that epilepsy is not exclusively inherited, that is, its cause need not be genetic. In fact, recent research data indicate that various environmental factors, including chronic stress, can cause epileptic seizures.

Resulting molecular and cellular mechanisms may change neuroplasticity to the extent that the affected tissue is no longer able to restore the normal state, which can then lead to chronic epilepsy. This may be one reason why the disease course differs from patient to patient.

The molecular alteration of the glycine receptor in the tissue of epilepsy patients is caused by a process known in research as “RNA editing”. Thereby, in the process of transcription of genetic information from DNA to RNA, individual letters are replaced with others. Enzymes are responsible for the editing of the text.

As a result, the original genetic text encoded in the DNA language no longer corresponds exactly to the RNA, which contains the code for the text building blocks of the proteins. The protein, in this case the glycine receptor, is altered so that it expresses a gain-of-function, and thus functions far more effectively than its non-edited counterpart.

Together with colleagues from Israel and different German universities, Dr. Aline Winkelmann and Professor Meier developed a new animal model of epilepsy to determine the role of this particular glycine receptor variant. This allowed them to express this receptor specifically in selected nerve cell types of the hippocampus and to investigate how it affects cognitive function and mood-related behavior.

They found that the RNA-edited gain-of-function receptor targets the presynaptic terminals, which transfer electrical impulses by releasing a neurotransmitter to other nerve cells. Thus, the function of selected types of nerve cells is strengthened, whereby the whole system of neuronal communication is thrown off balance.

Depending on whether excitatory or inhibitory nerve cells expressed the receptor, the mice were impaired in their cognitive abilities including memory deficits, or they showed increased anxiety.

“Our new animal model suggests that the same molecule can contribute to a wide range of symptoms in epilepsy patients – for example, cognitive dysfunction or anxiety – depending on which type of nerve cell expresses it,” Professor Meier said.

He and his colleagues have thus discovered a disease mechanism which they hope will open up new approaches to the development of targeted treatments for epilepsy patients. He stressed, however, “We must also identify the conductor of this cellular orchestra of dissonant molecular components that is responsible for receptor expression in varied nerve cells in the hippocampus of epilepsy patients.”

*Changes in neural network homeostasis trigger neuropsychiatric symptoms

Aline Winkelmann,1,2 Nicola Maggio,3 Joanna Eller,4 Gürsel Caliskan,5 Marcus Semtner,2 Ute Häussler,6 René Jüttner,7 Tamar Dugladze,4 Birthe Smolinsky,8 Sarah Kowalczyk,8 Ewa Chronowska,9 Günter Schwarz,8 Fritz G. Rathjen,7 Gideon Rechavi,10 Carola A. Haas,6,11 Akos Kulik,9,12 Tengis Gloveli,4,13 Uwe Heinemann,5 and Jochen C. Meier2

1FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany. 2RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel. 4Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany. 5CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany. 6Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany. 7Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 8Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany. 9Department of Physiology II, University of Freiburg, Freiburg, Germany. 10Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 11BrainLinks-BrainTools, Cluster of Excellence and 12BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. 13Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Weitere Informationen:

http://www.mdc-berlin.de/1158081/en/research/research_teams/rna_editing_and_hype...

Barbara Bachtler | Max-Delbrück-Centrum

Further reports about: Epilepsy Helmholtz MDC Max-Delbrück-Centrum Molecular RNA cognitive glycine receptor

More articles from Life Sciences:

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

nachricht Scientists from MIPT gain insights into 'forbidden' chemistry
11.02.2016 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

New method opens crystal clear views of biomolecules

11.02.2016 | Life Sciences

Scientists take nanoparticle snapshots

11.02.2016 | Physics and Astronomy

NASA sees development of Tropical Storm 11P in Southwestern Pacific

11.02.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>