Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Gain New Insights into Epilepsy

27.03.2014

Just as each musician in an orchestra contributes to the overall sound of a musical piece, different types of nerve cells in the brain make up the symphony of our consciousness.

They regulate and coordinate the activity of groups of neurons that represent parts of information, which they then may transmit to other brain regions. If this precise system is thrown off balance, diseases can develop.


In order to identify the nerve cells in the neuronal network which express the altered glycine receptor researchers inserted an extra gene segment that illuminates the nerve cells (purple). (Photo: Jochen Meier/Copyright: MDC)

Professor Jochen Meier of the Max Delbrück Center (MDC) investigates such processes. Together with his colleagues, he has gained new insights into epilepsy, showing why the disease may present different symptoms (Journal of Clinical Investigation, doi:10.1172/JC171472)*.

The research focus is on the glycine receptor, known from previous studies in the field of spinal cord research as an inhibitory neurotransmitter receptor. Several years ago the research group of neurobiologists showed that this receptor is molecularly altered in patients with intractable temporal lobe epilepsy, one of the most common forms of epilepsy.

Expression of the altered receptor is increased in the hippocampus, a region of the brain that triggers seizures in most patients at later stages of the disease.

Professor Meier, who leads a Helmholtz junior research group at the explained that epilepsy is not exclusively inherited, that is, its cause need not be genetic. In fact, recent research data indicate that various environmental factors, including chronic stress, can cause epileptic seizures.

Resulting molecular and cellular mechanisms may change neuroplasticity to the extent that the affected tissue is no longer able to restore the normal state, which can then lead to chronic epilepsy. This may be one reason why the disease course differs from patient to patient.

The molecular alteration of the glycine receptor in the tissue of epilepsy patients is caused by a process known in research as “RNA editing”. Thereby, in the process of transcription of genetic information from DNA to RNA, individual letters are replaced with others. Enzymes are responsible for the editing of the text.

As a result, the original genetic text encoded in the DNA language no longer corresponds exactly to the RNA, which contains the code for the text building blocks of the proteins. The protein, in this case the glycine receptor, is altered so that it expresses a gain-of-function, and thus functions far more effectively than its non-edited counterpart.

Together with colleagues from Israel and different German universities, Dr. Aline Winkelmann and Professor Meier developed a new animal model of epilepsy to determine the role of this particular glycine receptor variant. This allowed them to express this receptor specifically in selected nerve cell types of the hippocampus and to investigate how it affects cognitive function and mood-related behavior.

They found that the RNA-edited gain-of-function receptor targets the presynaptic terminals, which transfer electrical impulses by releasing a neurotransmitter to other nerve cells. Thus, the function of selected types of nerve cells is strengthened, whereby the whole system of neuronal communication is thrown off balance.

Depending on whether excitatory or inhibitory nerve cells expressed the receptor, the mice were impaired in their cognitive abilities including memory deficits, or they showed increased anxiety.

“Our new animal model suggests that the same molecule can contribute to a wide range of symptoms in epilepsy patients – for example, cognitive dysfunction or anxiety – depending on which type of nerve cell expresses it,” Professor Meier said.

He and his colleagues have thus discovered a disease mechanism which they hope will open up new approaches to the development of targeted treatments for epilepsy patients. He stressed, however, “We must also identify the conductor of this cellular orchestra of dissonant molecular components that is responsible for receptor expression in varied nerve cells in the hippocampus of epilepsy patients.”

*Changes in neural network homeostasis trigger neuropsychiatric symptoms

Aline Winkelmann,1,2 Nicola Maggio,3 Joanna Eller,4 Gürsel Caliskan,5 Marcus Semtner,2 Ute Häussler,6 René Jüttner,7 Tamar Dugladze,4 Birthe Smolinsky,8 Sarah Kowalczyk,8 Ewa Chronowska,9 Günter Schwarz,8 Fritz G. Rathjen,7 Gideon Rechavi,10 Carola A. Haas,6,11 Akos Kulik,9,12 Tengis Gloveli,4,13 Uwe Heinemann,5 and Jochen C. Meier2

1FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Berlin, Germany. 2RNA editing and Hyperexcitability Disorders Helmholtz Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Talpiot Medical Leadership Program, Department of Neurology and the J. Sagol Neuroscience Center, The Chaim Sheba Medical Center, Tel HaShomer, Israel. 4Cellular and Network Physiology Group, Institute of Neurophysiology, Charité Universitätsmedizin Berlin, Berlin, Germany. 5CC2 Zentrum für Physiologie, Freie Universität Berlin, Berlin, Germany. 6Experimental Epilepsy Research, Department of Neurosurgery, Neurocenter, University of Freiburg, Freiburg, Germany. 7Developmental Neurobiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 8Institute of Biochemistry, University of Cologne and Center for Molecular Medicine, Cologne, Germany. 9Department of Physiology II, University of Freiburg, Freiburg, Germany. 10Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 11BrainLinks-BrainTools, Cluster of Excellence and 12BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany. 13Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Weitere Informationen:

http://www.mdc-berlin.de/1158081/en/research/research_teams/rna_editing_and_hype...

Barbara Bachtler | Max-Delbrück-Centrum

Further reports about: Epilepsy Helmholtz MDC Max-Delbrück-Centrum Molecular RNA cognitive glycine receptor

More articles from Life Sciences:

nachricht Molecular Spies Sabotage a Protein's Activities in Specific Cellular Compartments
20.04.2015 | Johns Hopkins Medicine

nachricht Evolution puts checks on virgin births
20.04.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

High-Power Laser Spinoff Proves Versatility Is Strength

20.04.2015 | Physics and Astronomy

New “Cool Roof Time Machine” Will Accelerate Cool Roof Deployment

20.04.2015 | Architecture and Construction

STAR Heavy Flavor Tracker Detects Signs of Charm at RHIC

20.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>