Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Gain New Insights into the Process of Axon Myelination

08.11.2013
Dr. Tamara Grigoryan from the research group of Professor Walter Birchmeier at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch has gained new insights into the formation and differentiation of axons, through which nerve cells receive or transmit information.

Axons can be myelinated (wrapped in a myelin sheath) – allowing for faster nerve impulse conduction – or non-myelinated (without a myelin sheath). In collaboration with the research group of Professor Carmen Birchmeier, developmental biologist at the MDC, Dr. Grigoryan showed in mice how axon myelination or non-myelination is regulated in the peripheral nervous system (PNAS, doi: /10.1073/pnas.1310490110)*.

Besides neurons, glial cells are also key players in the nervous system. “Without the support of the glial cells, the nerve cells would not be able to function,” said Dr. Grigoryan. In the peripheral nervous system the Schwann cells play an important role. These are a group of glial cells named after their discoverer Theodor Schwann (1810-1882). Schwann cells surround the axons and form a myelin sheath. “Following a nerve injury in the peripheral nervous system, the Schwann cells trigger axon regeneration.” However, not all axons have a myelin sheath. How is this process regulated?

“At the beginning of their development in the embryo, the axons are grouped in bundles as extension of a nerve cell and are surrounded by a Schwann cell,” said Dr. Grigoryan. “At birth, however, the Schwann cell begins to sort out the thick axons from the bundle and to wrap them in a myelin sheath. The thin axons are not sorted out – they remain bundled and do not receive a myelin sheath. Researchers call this process axonal radial sorting.”

The large and thicker axons are wrapped by the Schwann cells in multiple layers. Due to this myelin insulation – like a power cable sheathed in plastic – these axons, for example of motor neurons, can transfer information very fast. This is why you can pull your hand quickly away from a hot stove, because the axons signal the information “hot – danger of burns”.

This fundamental process is regulated by a signaling pathway which researchers in Professor Walter Birchmeier’s laboratory have been studying for many years – the Wnt/beta-catenin signaling pathway. It is one of the best-studied signaling pathways. It plays a key role in embryonic development, cell growth (proliferation), cell maturation or cell specialization (differentiation) and in the regulation of stem cells, and, as the most recent work from the MDC now shows, even in the formation and differentiation of axons.

The research team attaches special significance to its discovery, since a dysregulation of Schwann cells can lead to a number of serious diseases. Dr. Grigoryan and her colleagues hope that this discovery will not only contribute to a better understanding of Schwann cell development but also to deeper insight into the pathogenesis of diseases in which these cells are involved.

*Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development

Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1

aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>