Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Gain New Insights into the Process of Axon Myelination

08.11.2013
Dr. Tamara Grigoryan from the research group of Professor Walter Birchmeier at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch has gained new insights into the formation and differentiation of axons, through which nerve cells receive or transmit information.

Axons can be myelinated (wrapped in a myelin sheath) – allowing for faster nerve impulse conduction – or non-myelinated (without a myelin sheath). In collaboration with the research group of Professor Carmen Birchmeier, developmental biologist at the MDC, Dr. Grigoryan showed in mice how axon myelination or non-myelination is regulated in the peripheral nervous system (PNAS, doi: /10.1073/pnas.1310490110)*.

Besides neurons, glial cells are also key players in the nervous system. “Without the support of the glial cells, the nerve cells would not be able to function,” said Dr. Grigoryan. In the peripheral nervous system the Schwann cells play an important role. These are a group of glial cells named after their discoverer Theodor Schwann (1810-1882). Schwann cells surround the axons and form a myelin sheath. “Following a nerve injury in the peripheral nervous system, the Schwann cells trigger axon regeneration.” However, not all axons have a myelin sheath. How is this process regulated?

“At the beginning of their development in the embryo, the axons are grouped in bundles as extension of a nerve cell and are surrounded by a Schwann cell,” said Dr. Grigoryan. “At birth, however, the Schwann cell begins to sort out the thick axons from the bundle and to wrap them in a myelin sheath. The thin axons are not sorted out – they remain bundled and do not receive a myelin sheath. Researchers call this process axonal radial sorting.”

The large and thicker axons are wrapped by the Schwann cells in multiple layers. Due to this myelin insulation – like a power cable sheathed in plastic – these axons, for example of motor neurons, can transfer information very fast. This is why you can pull your hand quickly away from a hot stove, because the axons signal the information “hot – danger of burns”.

This fundamental process is regulated by a signaling pathway which researchers in Professor Walter Birchmeier’s laboratory have been studying for many years – the Wnt/beta-catenin signaling pathway. It is one of the best-studied signaling pathways. It plays a key role in embryonic development, cell growth (proliferation), cell maturation or cell specialization (differentiation) and in the regulation of stem cells, and, as the most recent work from the MDC now shows, even in the formation and differentiation of axons.

The research team attaches special significance to its discovery, since a dysregulation of Schwann cells can lead to a number of serious diseases. Dr. Grigoryan and her colleagues hope that this discovery will not only contribute to a better understanding of Schwann cell development but also to deeper insight into the pathogenesis of diseases in which these cells are involved.

*Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development

Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1

aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>