Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Gain New Insights into the Process of Axon Myelination

08.11.2013
Dr. Tamara Grigoryan from the research group of Professor Walter Birchmeier at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch has gained new insights into the formation and differentiation of axons, through which nerve cells receive or transmit information.

Axons can be myelinated (wrapped in a myelin sheath) – allowing for faster nerve impulse conduction – or non-myelinated (without a myelin sheath). In collaboration with the research group of Professor Carmen Birchmeier, developmental biologist at the MDC, Dr. Grigoryan showed in mice how axon myelination or non-myelination is regulated in the peripheral nervous system (PNAS, doi: /10.1073/pnas.1310490110)*.

Besides neurons, glial cells are also key players in the nervous system. “Without the support of the glial cells, the nerve cells would not be able to function,” said Dr. Grigoryan. In the peripheral nervous system the Schwann cells play an important role. These are a group of glial cells named after their discoverer Theodor Schwann (1810-1882). Schwann cells surround the axons and form a myelin sheath. “Following a nerve injury in the peripheral nervous system, the Schwann cells trigger axon regeneration.” However, not all axons have a myelin sheath. How is this process regulated?

“At the beginning of their development in the embryo, the axons are grouped in bundles as extension of a nerve cell and are surrounded by a Schwann cell,” said Dr. Grigoryan. “At birth, however, the Schwann cell begins to sort out the thick axons from the bundle and to wrap them in a myelin sheath. The thin axons are not sorted out – they remain bundled and do not receive a myelin sheath. Researchers call this process axonal radial sorting.”

The large and thicker axons are wrapped by the Schwann cells in multiple layers. Due to this myelin insulation – like a power cable sheathed in plastic – these axons, for example of motor neurons, can transfer information very fast. This is why you can pull your hand quickly away from a hot stove, because the axons signal the information “hot – danger of burns”.

This fundamental process is regulated by a signaling pathway which researchers in Professor Walter Birchmeier’s laboratory have been studying for many years – the Wnt/beta-catenin signaling pathway. It is one of the best-studied signaling pathways. It plays a key role in embryonic development, cell growth (proliferation), cell maturation or cell specialization (differentiation) and in the regulation of stem cells, and, as the most recent work from the MDC now shows, even in the formation and differentiation of axons.

The research team attaches special significance to its discovery, since a dysregulation of Schwann cells can lead to a number of serious diseases. Dr. Grigoryan and her colleagues hope that this discovery will not only contribute to a better understanding of Schwann cell development but also to deeper insight into the pathogenesis of diseases in which these cells are involved.

*Wnt/Rspondin/β-catenin signals control axonal sorting and lineage progression in Schwann cell development

Tamara Grigoryana, Simone Steina, Jingjing Qia, Hagen Wendeb, Alistair N. Garrattc, Klaus-Armin Naved, Carmen Birchmeierb, and Walter Birchmeiera,1

aCancer Research Program and bNeuroscience Program, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; cCenter for Anatomy, Charité University Hospital, 10117 Berlin, Germany; and dDepartment of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>