Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Discover Why Basal Breast Cancer Can Be So Aggressive

06.12.2013
Breast cancer is the most common cancer in women. One subtype of breast cancer is particularly aggressive: estrogen receptor (ER)-negative basal breast cancer.

Researchers of the Max Delbrück Center (MDC) in Berlin-Buch have now elucidated the key factors for the aggressiveness of this subtype and at the same time have identified targets for the development of new and more effective treatments.

The study by Dr. Jane Holland, Professor Walter Birchmeier, Dr. Balász Györffy (Charité Berlin, Semmelweis University in Budapest, Hungary) as well as Dr. Klaus Eckert (EPO Experimental Pharmacology and Oncology GmbH) has now been published online in the open access journal Cell Reports*.

In contrast to estrogen-positive breast cancer, basal breast cancer is not controlled by this female sex hormone. This cancer subtype lacks hormone receptors, which is why in contrast to estrogen-positive or progesterone-positive breast cancer a “hormone withdrawal” (anti-hormone therapy) has no effect. Progesterone is also a female sex hormone. In the latter form of breast cancer, doctors can suppress the cancer growth with anti-hormone therapies, since drugs block the receptors for estrogen or progesterone on the surface of the cancer cells. Furthermore, breast cancer with receptors for the growth factor Her2 (abbreviation for human epidermal growth factor receptor 2) can be targeted with an antibody which occupies the receptors for Her2.

These therapies are not possible with the basal breast cancer subtype, according to Professor Birchmeier and Dr. Holland. In most cases (about 70 percent), the subtype neither has receptors for estrogen nor for progesterone nor Her2; it is therefore “triple negative”. “Thus, the only possible treatment for this cancer is chemotherapy,” they said. “However, because it is so difficult to treat, researchers and clinicians are seeking new ways to more specifically combat this fast-growing and aggressive type of cancer.

An infamous “triple combination”
Researchers have known for some time that two signaling pathways can play an important role in the malignant growth of basal breast cancer. One is the Wnt/beta-catenin signaling pathway, which Professor Walter Birchmeier’s laboratory has been studying for many years. This signaling pathway is essential for embryonic development, cell growth (proliferation) and cell maturation or cell specialization (differentiation). In the clinic it has been shown that patients with a high beta-catenin level may have basal breast cancer.

In addition, a growth factor is involved which researchers have named after its discovery site in the liver: hepatocyte growth factor/scatter factor (HGF/SF). It is referred to as scatter factor because it can separate cells from their respective cluster. It is therefore important for cancer research, as Professor Walter Birchmeier and his staff were able to demonstrate repeatedly: HGF/SF binds to its receptor (Met) in the cancer cell membrane, thus stimulating cancer growth.

Main driver identified for basal breast cancer
Dr. Holland has now shown that an infamous “triple-combination”, Wnt/beta-catenin and HGF/SF, plus an additional factor are to blame for the growth of basal breast cancer. In an adult mouse model, in which both signaling pathways are simultaneously mutated and activated, she identified the first two main drivers that induce the cancer cells to proliferate. Also involved is a system of signaling proteins (chemokines) that is activated by the two signaling pathways Wnt/beta-catenin and HGF/SF. Jane Holland, – she is Australian – already conducted research on this chemokine system during her doctoral thesis at the University of Adelaide. Mice in which additionally the gene for the receptor CXCR4 of this chemokine system has been inactivated are immune to this type of cancer. “Such genetic experiments clearly show that the third component is essential,” Professor Birchmeier said.

In vitro and in vivo in mice, the researchers in Berlin-Buch tested the various inhibitors that have already undergone clinical trials against other cancers but have not been approved. They proceeded step by step, until they ultimately used combinations of the various inhibitors at all three points of attack. Thus, they succeeded in dramatically suppressing cancer growth in mice. Dr. Holland and Professor Birchmeier explained: “A triple attack that blocks both the chemokine system and the two signaling pathways Wnt/beta-catenin and HGF/Met is the most effective.” Dr. Holland added: “This is shown by the fact that after their breast cancer treatment, the mice again formed normal, so-called alveolar structures instead of tumor tissue.” The researchers now hope that their findings will be used in further preclinical trials, and if successful, will also be applied in clinical research.

* Combined Wnt/-catenin, Met and CXCL12/CXCR4 Signals Characterize Basal Breast Cancer and Predicts Disease Outcome

Jane D. Holland1*, Balázs Győrffy2,3, Regina Vogel1, Klaus Eckert4, Giovanni Valenti1, Liang Fang1, Philipp Lohneis3, Sefer Elezkurtaj3, Ulrike Ziebold1, and Walter Birchmeier1

1 Department of Cancer Research, Max Delbrück Center for Molecular Medicine (MDC), Robert-Roessle-Str. 10, Berlin, Germany
2 Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences - Semmelweis University, Bókay u. 53-54, Budapest, Hungary
3 Institute for Pathology, Charité Medical University, Charitéplatz 1, Berlin, Germany
4 Experimental Pharmacology & Oncology (EPO), Robert-Roessle-Str. 10, Berlin, Germany

http://dx.doi.org/10.1016/j.celrep.2013.11.001

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Strasse 10; 13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>