Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Develop New Tool to Investigate Ion Channels - Application of Neurotoxins of Cone Snails and Spiders

11.02.2010
Neurotoxins from cone snails and spiders help neurobiologists Sebastian Auer, Annika S. Stürzebecher and Dr. Ines Ibañez-Tallon of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, to investigate the function of ion channels in neurons.

Ion channels in the cell membrane enable cells to communicate with their environment and are therefore of vital importance. The MDC researchers have developed a system which for the first time allows the targeted, long-lasting investigation of ion channel function in mammals and also the blockade of the ion channels with neurotoxins.

In transgenic mice they succeeded in blocking chronic pain by introducing a toxin gene into the organism (Nature Method, doi:10.1038/NMETH.1425)*.

There are approximately 500 species of cone snails, each producing 50 – 200 different conotoxins. A similar number of peptide toxins are produced by snakes, spiders, sea anemones, scorpions and other venomous animals. The animals use the neurotoxins to paralyze their prey.

Scientists estimate that more than 100,000 neurotoxins exist. They have become a topic of enormous research interest: Using neurotoxins researchers can target different ion channels, receptors and other signaling molecules and characterize their physiological function.

This kind of research can also give them insight into disease processes and eventually help them to find new therapies to eventually block hyperactive ion channels. For instance, a compound (Ziconotide) based on the toxin of a cone snail is already used to treat severe chronic pain in patients.

Dr. Ibañez-Tallon’s research group is concentrating on two ion channels in the membrane of neurons which are activated by electric stimulation (action potential). Once activated, they allow the influx of calcium ions into the neuron, and the cell then releases chemicals (neurotransmitters), which send the signal to the next neuron.

During the last decades soluble neurotoxins have greatly helped in the characterization of ion channels and receptors because of their ability to specifically bind and inhibit these channels. However, soluble neurotoxins can only be applied for limited time, and their activity cannot be directed to specific cells.

Sebastian Auer, Annika S. Stürzebecher and Dr. Ibañez-Tallon managed to circumvent this problem with genetic engineering. Using lentiviruses they developed a shuttle to deliver the genes of cone snail and spider toxins into the neurons. The result: The neurons now long-lastingly produce toxins which directly bind to the calcium ion channels the researchers want to investigate. This was the first step – the targeted and long-lasting binding of the toxins to a specific ion channel in the cell culture.

Secondly, the researchers were able to demonstrate that with their tool they can also express toxin genes in animals in a targeted way and also lastingly characterize ion channels. In transgenic mice they were able to block certain calcium ion channels with their toxins and thus block chronic pain.

*Silencing neurotransmission with membrane-tethered toxins

Sebastian Auer1,4, Annika S Stürzebecher1,4, René Jüttner2, Julio Santos-Torres1, Christina Hanack1, Silke Frahm1, Beate Liehl1 & Inés Ibañez-Tallon1

1Molecular Neurobiology group and 2Developmental Neurobiology group, Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany. 3Present address: Novartis Pharma AG, Basel, Switzerland. 4These authors contributed equally to this work. Correspondence should be addressed to I.I.-T. (ibanezi@mdc-berlin.de).

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | EurekAlert!
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>