Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Develop Method to Detect Molecular-Scale Movements Relevant for Fine Touch

10.04.2014

Touch can be comforting, raise a person’s spirits and even evoke feelings of happiness. The sensation of touch begins in our skin or more specifically, in certain cells whose nerve endings (neurites) are distributed throughout our skin.

Some of these cells are so incredibly sensitive that even Prof. Gary Lewin and Dr. Kate Poole, who have been studying the “mechanoreception” of the touch sensation for years, were surprised by their findings.

The two scientists of the Max Delbrück Center (MDC) Berlin-Buch and their team of researchers have developed a system with which molecular-scale mechanical stimuli can be exerted on a single cell (Nature Communications, doi: 10.1038/ ncomms4520)*.

The most sensitive of these cells “react to mechanical changes on their surface in the order of magnitude of a few millionths of a millimeter,” said Dr. Poole. “For a pain-sensitive cell to respond – it functions like a mechanoreceptive cell – a considerably stronger stimulus is needed,” the biologist said, explaining the latest experiments of the MDC researchers. These findings could be important to develop new therapies for people with neuropathic pain, for example, for shingles. For these patients, the slightest touch is painful.

In their previous work the Berlin researchers showed that the mechanoreceptive cells are crucial for the sensation of touch – but only in the context of their surroundings, the so-called matrix and its constituent molecules. Pressure or movement of the skin acts on both the matrix and the embedded nerve endings simultaneously.

To unlock the secrets of the sense of touch, the scientists created an artificial system that mimics real-world conditions. It looks like a tiny nail cushion just a few thousandths of a millimeter in size. This system allows very fine and defined mechanical stimuli to be exerted on mechanosensitive cells – via their connection with the matrix. Simultaneously with matrix movement the researchers can directly measure the electrical response of the cell.

Dr. Poole and the research team were amazed to find that if one single nail within the special nail cushion is displaced by just a ten millionth of a millimeter, mechanosensitive cells react and transduce the stimulus, in the intact organism to the brain.

Apparently, mammals have groups of touch sensors with different levels of sensitivity. Pain-sensitive cells from the skin of the mouse, however, must be mechanically stimulated 1000 times stronger before they are activated. “That makes sense,” said study leader Professor Lewin, “otherwise we would often feel pain unnecessarily.”

In a second step, the MDC researchers wanted to know what molecules mediate the significantly different sensitivity of touch and pain sensory cells. The result: a protein named Stoml3 substantially controls the variation in the sensitivity to mechanical stimuli. “When the gene for Stoml3 is inactivated,” Dr. Poole said, “the differences in mechanosensitivity sensitivity almost completely disappear.”

According to the findings of the MDC researchers, Stoml3 modulates the activity and sensitivity of two so-called ion channels in the membranes of many different cell types. These ion channels are called Piezo1 and Piezo2. “Our findings strongly indicate that Piezo2 is involved in touch perception and transduces the appropriate signals, under powerful regulatory control by Stoml3,” Professor Lewin added.

Understanding how Stoml3 works exactly could open up new ways to combat neuropathic pain. The researchers are seeking to block the hypersensitive touch sensors in the skin of patients. According to Lewin, Stoml3 provides a very good target for this. A potentially interesting aspect of this study: An anesthetic injection, e.g. by the dentist, numbs all feeling in the tissue. By contrast, this new form of therapy would only inhibit the conversion of mechanical stimuli into electrical signals. “Otherwise you could continue to feel everything,” said Lewin, “heat, cold, and so on.”

*Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

Kate Poole1,*, Regina Herget1, Liudmila Lapatsina1, Ha-Duong Ngo2 and Gary R. Lewin1,*
Affiliations:1 Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany.
2Microsensor & Actuator Technology, Technische Universität Berlin, D-13355 Berlin, Germany.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

Barbara Bachtler | Max-Delbrück-Centrum

Further reports about: MDC Max-Delbrück-Centrum Molecular neuropathic pain sensitive sensitivity signals skin stimulus

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>